यदि $M = $द्रव्यमान, $L = $लम्बाई, $T = $समय तथा $I = $विद्युत धारा तथा यदि $[{\varepsilon _0}]$निर्वात की विद्युतशीलता तथा $[{\mu _0}]$ निर्वात की चुम्बकशीलता की विमा को प्रदर्शित करें तो $M,L,T$ तथा $I$ के पदों में सही विमीय सूत्र है। जहाँ संकेतों के सामान्य अर्थ हैं

  • [IIT 1998]
  • A

    $[{\varepsilon _0}] = {M^{ - 1}}{L^{ - 3}}{T^2}I$

  • B

    $[{\varepsilon _0}] = {M^{ - 1}}{L^{ - 3}}{T^4}{I^2}$

  • C

    $[{\mu _0}] = ML{T^{ - 2}}{I^{ - 2}}$

  • D

    $[{\mu _0}] = M{L^2}{T^{ - 1}}I$

Similar Questions

सूत्र $X = 3Y{Z^2}$ में $X$ और $Z$ क्रमश: धारिता और चुम्बकीय क्षेत्र की विमायें हैं। $MKSQ$ पद्धति में $Y$ की विमायें हैं

  • [AIIMS 2017]

एक वास्तविक गैस का समीकरण

$\left(\mathrm{P}+\frac{\mathrm{a}}{\mathrm{V}^2}\right)(\mathrm{V}-\mathrm{b})=\mathrm{RT}$ द्वारा दिया गया है, जहाँ

$\mathrm{P}, \mathrm{V}$ तथा $\mathrm{T}$ क्रमशः दाब, आयतन तथा तांपमान है

एवं $\mathrm{R}$ सार्वत्रिक गैस नियतांक है। $\frac{\mathrm{a}}{\mathrm{b}^2}$ की विमा किसके समतुल्य है ?

  • [JEE MAIN 2024]

एक बल को निम्न प्रक़ार प्रदर्शित किया गया है $I-a x^2+b t^{1 / 2}$ जसाँ $x$ - गूरी त $t$ - समय है $h^{2 / a}$ की विमाएँ हैं :

  • [JEE MAIN 2024]

$\frac{ B ^{2}}{2 \mu_{0}}$, जहाँ $B$ चुम्बकीय क्षेत्र है और $\mu_{0}$ निर्वात की चुम्बकीय पागम्यता है, की विमायें हैं।

  • [JEE MAIN 2020]

मार्टियन पद्धति में बल $(F)$, त्वरण $(A)$ और समय $(T)$ को मूल भौतिक राशि के रुप में उपयोग करते हैं। लम्बाई की विमायें मार्टियन पद्धति में होंगी