विस्थापन $25\hat i - 6\hat j\,\,m$ में कितना विस्थापन जोड़ें कि $X-$ दिशा में $7.0 \,m $ का विस्थापन प्राप्त हो
$18\hat i - 6\hat j$
$32\hat i - 13\hat j$
$ - 18\hat i + 6\hat j$
$ - 25\hat i + 13\hat j$
दो बल ${F_1} = 1\,N$ तथा ${F_2} = 2\,N$ क्रमश: $x = 0$ तथा $y = 0$ रेखाओं के अनुदिश कार्यरत हैं तो बलों का परिणामी होगा
सदिश $\overrightarrow{ A }$ और $\overrightarrow{ B } .$ इस प्रकार हैं कि $|\overrightarrow{ A }+\overrightarrow{ B }|=|\overrightarrow{ A }-\overrightarrow{ B }|$ इन दो सदिशों के बीच का कोण है
दो बल इस प्रकार हैं कि इनके योग का परिमाण $18\, N$ एवं इनका परिणामी (जिसका परिमाण $12\, N$ है) कम परिमाण के बल पर लम्बवत् है। तब बलों के परिमाण है
माना $\mathop C\limits^ \to = \mathop A\limits^ \to + \mathop B\limits^ \to $ तब
किसी सदिश के प्रारंभिक तथा अंतिम बिन्दुओं के निर्देशांक $(4, -4, 0) $ तथा $(-2, -2, 0)$ हैं। इसका परिमाण होगा