यदि $a$ व $b$ समीकरण ${x^2} - 3x + p = 0$ के मूल हैं तथा $c$ व $d$ समीकरण ${x^2} - 12x + q = 0$ के मूल हैं, जहाँ $a,\;b,\;c,\;d$ एक वर्धमान गुणोत्तर श्रेणी बनाते हैं, तब $(q + p):(q - p)$ का अनुपात है
$8 : 7$
$11 : 10$
$17 : 15$
इनमें से कोई नहीं
माना $\mathrm{a}_1, \mathrm{a}_2, \mathrm{a}_3, \ldots$. वर्धमान धनात्मक संख्याओं की एक $GP$ है। यदि चौथे व छटवें पदों का गुणनफल 9 है और पाँचवे व सातवें पदों का योग 24 है, तब $\mathrm{a}_1 \mathrm{a}_9+\mathrm{a}_2 \mathrm{a}_4 \mathrm{a}_9+\mathrm{a}_5+\mathrm{a}_7$ बराबर है___________________.
$n$ का मान ज्ञात कीजिए ताकि $\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}, a$ तथा $b$ के बीच गुणोत्तर माध्य हो।
अनंत गुणोत्तर श्रेणी $\frac{{\sqrt 2 + 1}}{{\sqrt 2 - 1}},\frac{1}{{2 - \sqrt 2 }},\frac{1}{2}.....$ के पदों का योग होगा
यदि $a, b, c$ तथा $d$ गुणोत्तर श्रेणी में हैं तो दिखाइए कि $\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)=$ $(a b+b c+c d)^{2}$
किसी गुणोत्तर श्रेणी की $3$ संख्याओं का योग $38$ तथा गुणनफल $1728$ है तब मध्य संख्या है