ધારોકે $5$ ત્રિજ્યાવાળું એક વર્તુળ, $x$-અક્ષની નીચે આવેલું છ. રેખા $L_{1}: 4 x+3 y+2=0$ એ વર્તુળ $C$ ના કેન્દ્ $P$ માંથી પસાર થાય છે અને રેખા $L_{2}: 3 x-4 y-11=0$ ને છદે છે. રેખા $L_{2}$ એ $C$ ને $Q$ આગળ સ્પર્શ છે. તો $P$ નું રેખા $5 x-12 y+51=0$ થી અંતર $\dots\dots\dots$છે.
$9$
$10$
$11$
$12$
વર્તુળ $x^2 + y^2 = 4$ પરના બિંદુ $(\sqrt 3,1)$ પર આંતરેલ અભિલંબ અને સ્પર્શક તથા $x -$ અક્ષ થી બનતા ત્રિકોણનું ક્ષેત્રફળ ચો. એકમમાં મેળવો
વર્તૂળો $x^2 + y^2 + 4x + d = 0, x^2 + y^2 + 4fy + d = 0$ એકબીજાને ક્યારે સ્પર્શેં ?
રેખા $ax + by + c = 0$ એ વર્તૂળ $x^2 + y^2 = r^2$ નો અભિલંબ છે. વર્તૂળ દ્વારા $ax + by + c = 0$ રેખા પર અંત:ખંડનાં ભાગની લંબાઈ :
જો ત્રિજ્યા $R$ ધરાવતું વર્તુળ ઉંગમબિંદુ $O$ માંથી પસાર થતું હોય અને યામાક્ષોને બિંદુ $A$ અને $B$ માં છેદે તો બિંદુ $O$ થી રેખા $AB$ પરના લંબનો પાથ મેળવો.
જો બિંદુ $P$ માંથી વર્તૂળો $x^{2} + y^{2} = a^2 \,\,, x^2 + y^{2} = b^2$ અને $x^{2} + y^{2} = c^{2}$ પર દોરેલા સ્પર્શકોની લંબાઈનો વર્ગ સમાંતર શ્રેણીમાં હોય, તો.....