Let a set $A=A_{1} \cup A_{2} \cup \ldots \cup A_{k,} \quad$ where $A_{ i } \cap A _{ j }=\phi$ for $i \neq j 1 \leq i , j \leq k$. Define the relation $R$ from $A$ to $A$ by $R=\left\{(x, y): y \in A_{i}\right.$ if and only if $\left.x \in A_{i}, 1 \leq i \leq k\right\}$. Then, $R$ is
reflexive, symmetric but not transitive
reflexive, transitive but not symmetric
reflexive but not symmetric and transitive
an equivalence relation
The relation "is subset of" on the power set $P(A)$ of a set $A$ is
Let $R= \{(3, 3) (5, 5), (9, 9), (12, 12), (5, 12), (3, 9), (3, 12), (3, 5)\}$ be a relation on the set $A= \{3, 5, 9, 12\}.$ Then, $R$ is
Let $P$ be the relation defined on the set of all real numbers such that
$P = \left\{ {\left( {a,b} \right):{{\sec }^2}\,a - {{\tan }^2}\,b = 1\,} \right\}$. Then $P$ is
Let $R$ be a relation on the set of all natural numbers given by $\alpha b \Leftrightarrow \alpha$ divides $b^2$.
Which of the following properties does $R$ satisfy?
$I.$ Reflexivity $II.$ Symmetry $III.$ Transitivity
Consider the relations $R_1$ and $R_2$ defined as $a R_1 b$ $\Leftrightarrow a^2+b^2=1$ for all $a, b, \in R$ and $(a, b) R_2(c, d)$ $\Leftrightarrow a+d=b+c$ for all $(a, b),(c, d) \in N \times N$. Then