माना $A$ में 5 अवयव है तथा समुच्चय $B$ में भी 5 अवयव हैं। माना समुच्चयों $A$ तथा $B$ के अवयवों के माध्य क्रमशः $5$ तथा $8$ है और समुच्चयों $A$ तथा $\mathrm{B}$ के अवयवों $12$ तथा $20$ है। $\mathrm{A}$ के प्रत्येक अवयव में से $3$ घटा कर तथा $B$ के प्रत्येक अवयव में $2$ जोड़ कर $10$ अवयवों का एक नया समुच्चय $\mathrm{C}$ बनाया जाता है। तो $\mathrm{C}$ के अवयवों के माध्य तथा प्रसरण का योग है :

  • [JEE MAIN 2023]
  • A

    $32$

  • B

    $38$

  • C

    $40$

  • D

    $36$

Similar Questions

माना $n$ प्रेक्षणों $x_{1}, x_{2}, \ldots, x_{ n }$ के माध्य बहुलक तथा प्रसरण क्रमश: $\bar{x}, M$ तथा $\sigma^{2}$ तथा $d _{ i }=-x_{ i }- a$, $i=1,2, \ldots, n$ हैं, जहाँ $a$ कोई संख्या हैं।

कथन $I$ : $d _{1}, d _{2}, \ldots, d _{ n }$ का प्रसरण $\sigma^{2}$ हैं

कथन $II$ : $d _{1}, d _{2}, \ldots, d _{ n }$ के माध्य तथा बहुलक क्रमाश: $-\bar{x}- a$ तथा $- M - a$ है

  • [JEE MAIN 2014]

किसी प्रयोग में $x$ पर $15$ प्रेक्षणों के निम्न परिणाम प्राप्त होते हैं, $\sum {x^2} = 2830$, $\sum x = 170$. प्रेक्षण करने पर एक मान $20$ गलत पाया गया तथा उसे सही मान $30$ से प्रतिस्थापित किया गया। तब सही प्रसरण है...

  • [AIEEE 2003]

$30$ आइटम (items) का परिणाम देखा गया, इनमें से $10$ आइटम में प्रत्येक के परिणाम $\frac{1}{2}- d$ दिया, $10$ आइटम में प्रत्येक ने परिणाम $\frac{1}{2}$ दिया तथा बाकि $10$ आइटम में प्रत्येक ने परिणाम $\frac{1}{2}+d$ दिया। यदि इन आँकड़ों का प्रसरण $\frac{4}{3}$ है, तो $| d |$ बराबर

  • [JEE MAIN 2019]

$2n$ प्रेक्षणों की एक श्रेणी में, आधे $a$ के बराबर तथा शेष आधे $-a$ के बराबर हैं। यदि प्रेक्षणों का मानक विचलन $2$ हैए तब $|a|$ =

  • [AIEEE 2004]

माना $10$ प्रेक्षणों $\mathrm{a}_1, \mathrm{a}_2, \ldots . \mathrm{a}_{10}$ के लिए $\sum_{\mathrm{k}=1}^{10} \mathrm{a}_{\mathrm{k}}=50$तथा $\sum_{\forall k < j} a_k \cdot a_j=1100$ है। तो $a_1, a_2, \ldots, a_{10}$ का मानक विचलन बराबर है :

  • [JEE MAIN 2024]