संख्याओं $a , b , 8,5,10$ का माध्य $6$ तथा इनका प्रसरण $6.8$ है। यदि माध्य के सापेक्ष संख्याओं का मानक विचलन $M$ है, तो $25\,M$ बराबर है
$60$
$55$
$50$
$45$
यदि संख्याओं $1,2,3, \ldots .,, n$ (जहाँ $n$ विषम है) का माध्य के सापेक्ष माध्य विचलन $\frac{5( n +1)}{ n }$ है तब $n$ बराबर होगा -
माना प्रेक्षणों के दो समुच्चय $\mathrm{X}=\{11,12,13, \ldots \ldots$, $40,41\}$ तथा $\mathrm{Y}=\{61,62,63, \ldots ., 90,91\}$ है। यदि इनके माध्य क्रमशः $\bar{x}$ तथा $\bar{y}$ हैं तथा $\mathrm{X} \cup \mathrm{Y}$ में सभी प्रेक्षणों का प्रसरण $\sigma^2$ है तो $\left|\overline{\mathrm{x}}+\overline{\mathrm{y}}-\sigma^2\right|$ बराबर है_____________.
$15$ प्रेक्षणों के माध्य तथा मानक विचलन क्रमशः $12$ तथा 3 प्राप्त किए गए। पुनः जाँच पर यह पाया गया कि एक प्रेक्षण को $12$ की जगह $10$ पढ़ा गया था। यदि सही प्रेक्षणों के माध्य तथा प्रसरण क्रमशः $\mu$ तथा $\sigma^2$ है, तो $15\left(\mu+\mu^2+\sigma^2\right)$ बराबर है ................|
$2n$ प्रेक्षणों की एक श्रेणी में, आधे $a$ के बराबर तथा शेष आधे $-a$ के बराबर हैं। यदि प्रेक्षणों का मानक विचलन $2$ हैए तब $|a|$ =
$5$ प्रेक्षणों का माध्य एवं प्रसरण क्रमशः $5$ एवं $8$ हैं। यदि तीन प्रेक्षण $1,3,5$ हैं, तब शेष दो प्रेक्षणों के घनों का योग है-