Let the focal chord of the parabola $P: y^{2}=4 x$ along the line $L: y=m x+c, m>0$ meet the parabola at the points $M$ and $N$. Let the line $L$ be a tangent to the hyperbola $H : x ^{2}- y ^{2}=4$. If $O$ is the vertex of $P$ and $F$ is the focus of $H$ on the positive $x$-axis, then the area of the quadrilateral $OMFN$ is.
$2 \sqrt{6}$
$2 \sqrt{14}$
$4 \sqrt{6}$
$4 \sqrt{14}$
The magnitude of the gradient of the tangent at an extremity of latera recta of the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ is equal to (where $e$ is the eccentricity of the hyperbola)
If $5{x^2} + \lambda {y^2} = 20$ represents a rectangular hyperbola, then $\lambda $ equals
If for a hyperbola the ratio of length of conjugate Axis to the length of transverse axis is $3 : 2$ then the ratio of distance between the focii to the distance between the two directrices is
An ellipse $E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ passes through the vertices of the hyperbola $H: \frac{x^{2}}{49}-\frac{y^{2}}{64}=-1$. Let the major and minor axes of the ellipse $E$ coincide with the transverse and conjugate axes of the hyperbola $H$. Let the product of the eccentricities of $E$ and $H$ be $\frac{1}{2}$. If $l$ is the length of the latus rectum of the ellipse $E$, then the value of $113\,l$ is equal to $....$
The straight line $x + y = \sqrt 2 p$ will touch the hyperbola $4{x^2} - 9{y^2} = 36$, if