અહી પરવલય $P: y^{2}=4 x$ ની નાભીજીવા એ રેખા $L: y=m x+c, m>0$ ને સંપાતી છે કે જે પરવલય ને બિંદુઓ $M$ અને $N$ માં છેદે છે. જો રેખા $L$ એ અતિવલય $H : x ^{2}- y ^{2}=4$ નો સ્પર્શક છે .જો $O$ એ $P$ નું શિરોબિંદુ છે અને $F$ એ $H$ ની ધન $x-$અક્ષ પરની નાભી હોય તો ચતુષ્કોણ $OMFN$ નું ક્ષેત્રફળ મેળવો.
$2 \sqrt{6}$
$2 \sqrt{14}$
$4 \sqrt{6}$
$4 \sqrt{14}$
જેની નિયામિકા $2x + y = 1$, નાભિકેન્દ્ર $(1, 1)$ અને ઉત્કેન્દ્રીતા $=\sqrt 3$ હોય, તેવા અતિવલયનું સમીકરણ.....
વિધાન $ (A) $ : બિંદુ $(5, -4)$ એ અતિવલય $y^2 - 9x^2 + 1 = 0 $ ની અંદર આવેલું છે.
કારણ ${\rm{(R)}}$ બિંદુઓ ${\rm{ (}}{{\rm{x}}_{\rm{1}}}{\rm{, }}{{\rm{y}}_{\rm{1}}}{\rm{)}}$ એઅતિવલય ${\rm{ }}\,\,\frac{{{x^2}}}{{{a^2}}}\, - \,\,\frac{{{y^2}}}{{{b^2}}}\, = \,\,1$ ની અંદર આવેલું , તો $\frac{{x_{^1}^2}}{{{a^2}}}\, - \,\,\frac{{y_1^2}}{{{b^2}}}\, - \,\,1\,\, < \,\,0$
સમીકરણ $9x^2 - 16y^2 - 18x + 32y - 151 = 0$ કેવો અતિવલય દર્શાવે છે ?
જો રેખા $y=m x+c$ એ અતિવલય $\frac{x^{2}}{100}-\frac{y^{2}}{64}=1$ અને વર્તુળ $x^{2}+y^{2}=36$ બંનેનો સામાન્ય સ્પર્શક હોય તો નીચેનામાંથી ક્યુ વિધાન સાચું છે ?
જેની નાભિઓ $(-2, 0)$ અને $(2, 0)$ હોય, અને ઉત્કેન્દ્રતા $2$ હોય તેવા અતિવલયનું સમીકરણ :