माना एक दीर्घवृत्त $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a>b$ की नाभियाँ तथा नाभिलंब जीवा की लंबाई क्रमशः $( \pm 5,0)$ तथा $\sqrt{50}$ हैं तो अतिपरवलय $\frac{\mathrm{x}^2}{\mathrm{~b}^2}-\frac{\mathrm{y}^2}{\mathrm{a}^2 \mathrm{~b}^2}=1$ की उत्केन्द्रता का वर्ग बराबर है ..............
$40$
$48$
$51$
$50$
एक दीर्घवृत्त, जिसका केन्द्र मूल बिन्दु पर है, की उत्केन्द्रता $\frac{1}{2}$ है। यदि उसकी एक नियता $x=-4$ है, तो उसके बिंदु $\left(1, \frac{3}{2}\right)$ पर उसके अभिलंब का समीकरण है:
उस दीर्घवृत्त, जिसके अक्ष निर्देशांक अक्ष है, जो बिन्दु $(-3,1)$ से होकर जाता है तथा जिसकी उत्केन्द्रता $\sqrt{\frac{2}{5}}$ है, का समीकरण है:
प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए
$b=3, c=4,$ केंद्र मूल बिंदु पर, नाभियाँ $x$ अक्ष पर
यदि दीर्घवृत्त $x ^2+4 y ^2+2 x +8 y -\lambda=0$ की नाभिलंब जीवा की लंबाई $4$ है तथा इसके दीर्घअक्ष की लंबाई $l$ है, तो $\lambda+l$ बराबर है $...........$
दीर्घवृत्त $25{x^2} + 16{y^2} = 100$ की उत्केन्द्रता है