10-2. Parabola, Ellipse, Hyperbola
hard

माना एक दीर्घवृत्त $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a>b$ की नाभियाँ तथा नाभिलंब जीवा की लंबाई क्रमशः $( \pm 5,0)$ तथा $\sqrt{50}$ हैं तो अतिपरवलय $\frac{\mathrm{x}^2}{\mathrm{~b}^2}-\frac{\mathrm{y}^2}{\mathrm{a}^2 \mathrm{~b}^2}=1$ की उत्केन्द्रता का वर्ग बराबर है ..............

A

$40$

B

$48$

C

$51$

D

$50$

(JEE MAIN-2024)

Solution

$\text { focii } \equiv( \pm 5,0) ; \frac{2 b^2}{a}=\sqrt{50} $

$ae=5 \quad b^2=\frac{5 \sqrt{2} a}{2} $

$b^2=a^2\left(1-e^2\right)=\frac{5 \sqrt{2} a}{2}$

$ \Rightarrow \mathrm{a}\left(1-\mathrm{e}^2\right)=\frac{5 \sqrt{2}}{2}$

$\Rightarrow \frac{5}{\mathrm{e}}\left(1-\mathrm{e}^2\right)=\frac{5 \sqrt{2}}{2} $

$\Rightarrow \sqrt{2}-\sqrt{2} \mathrm{e}^2=\mathrm{e} $

$ \Rightarrow \sqrt{2} \mathrm{e}^2+\mathrm{e}-\sqrt{2}=0 $

$ \Rightarrow \sqrt{2} \mathrm{e}^2+2 \mathrm{e}-\mathrm{e}-\sqrt{2}=0$

$ \Rightarrow \sqrt{2} \mathrm{e}(\mathrm{e}+\sqrt{2})-1(1+\sqrt{2})=0 $

$\Rightarrow(\mathrm{e}+\sqrt{2})(\sqrt{2} \mathrm{e}-1)=0 $

$ \therefore \mathrm{e} \neq-\sqrt{2} $

$\mathrm{e}=\frac{1}{\sqrt{2}}$

$\frac{x^2}{b^2}-\frac{y^2}{a^2 b^2}=1 \quad a=5 \sqrt{2} $

$ b=5$

$ a^2 b^2=b^2\left(e_1^2-1\right) \Rightarrow e_1^2= 51$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.