माना दीर्घवृत्त $\frac{x^2}{36}+\frac{y^2}{4}=1$ के बिंदु $(3 \sqrt{3}, 1)$ पर स्पर्श रेखा तथा अभिलंब $\mathrm{y}$-अक्ष को क्रमशः बिंदुओं $\mathrm{A}$ तथा $B$ पर मिलते हैं। माना $A B$ को एक व्यास लेकर खींचा गया वृत्त $C$ है तथा रेखा $x=2 \sqrt{5}$, वृत्त $C$ को बिंदुओं $\mathrm{P}$ तथा $\mathrm{Q}$ पर काटती है। यदि वृत्त के बिंदुओं $P$ तथा $Q$ पर स्पर्श रेखाओं का प्रतिच्छेदन बिंदु $(\alpha, \beta)$ है, तो $\alpha^2-\beta^2$ बराबर है

  • [JEE MAIN 2023]
  • A

    $\frac{314}{5}$

  • B

    $\frac{304}{5}$

  • C

    $60$

  • D

    $61$

Similar Questions

प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए

शीर्षों $(0,\pm 13),$ नाभियाँ $(0,±5)$

दीर्घवृत्तों (Ellipses) $\left\{ E _1, E _2, E _3, \ldots ..\right\}$ और आयतों (rectangles) $\left\{ R _1, K _2, K _3, \ldots ..\right\}$ के संग्रहों को निम्न प्रकार से परिभाषित करे :

$E_1: \frac{x^2}{9}+\frac{y^2}{4}=1$

$R _1$ : अधिकतम क्षेत्र (largest area) का आयत, जिसकी भुजाएं अक्षों (axes) के समान्तर है, और जो $E _1$ में अंतस्थित (inscribed) है ;

$E _{ n }$ : अध्कितम क्षेत्र वाला दीर्घवृत्त $\frac{ x ^2}{ a _{ n }^2}+\frac{ y ^2}{ b _{ n }^2}=1$ जो $R _{ n -1}, n >1$ में अंतर्स्थित है ;

$R _{ n }$ : अध्कितम क्षेत्र का आयत, जिसकी भुजाएं अक्षों के समान्तर है, और जो $E _{ n }, n >1$ में अंतस्थित है। तब निम्न में से कौनसा (से) विकल्प सही है (हैं) ?

$(1)$ $E _{18}$ और $E _{19}$ की उत्केन्द्रतायें (eccentricities) समान नहीं है

$(2)$ $E _{ o }$ में केन्द्र से एक नाभि (focus) की दूरी $\frac{\sqrt{5}}{32}$ है

$(3)$ $E _9$ के नाभिलम्ब (latus rectum) की लम्बाई $\frac{1}{6}$ है

$(4)$ प्रत्येक पूर्णांक $N$ के लिए $\sum_{ n =1}^{ N }\left( R _{ n }\right.$ का क्षेत्रफल $)<24$ है

  • [IIT 2019]

दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ व सरल रेखा $y = mx + c$ वास्तविक बिन्दुओं पर प्रतिच्छेद करते हैं यदि

दीर्घवृत्त  $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ व वृत्त ${x^2} + {y^2} = ab$ का प्रतिच्छेद कोण है  

दीर्घवृत्त $\frac{{{{(x - 1)}^2}}}{9} + \frac{{{{(y + 1)}^2}}}{{25}} = 1$ की उत्केन्द्रता है