यदि परवलय $y^{2}=4 x$ की नाभिलम्ब जीवा, दो वृत्तों, $C_{1}$ तथा $C _{2}$ की उभयनिष्ठ जीवा है, जबकि वृत्तों में से प्रत्येक का अर्धव्यास $2 \sqrt{5}$ है, तो वृत्तों $C _{1}$ एवं $C _{2}$ के केन्द्र बिन्दुओं के बीच की दूरी है 

  • [JEE MAIN 2020]
  • A

    $8$

  • B

    $4 \sqrt{5}$

  • C

    $12$

  • D

    $8 \sqrt{5}$

Similar Questions

वृत्तों $2{x^2} + 2{y^2} - 7x = 0$ और ${x^2} + {y^2} - 4y - 7 = 0$ के मूलाक्ष (radical axis) का समीकरण होगा

दो वृत्त $x^{2}+y^{2}=a x$ तथा $x^{2}+y^{2}=c^{2}(c > 0)$ स्पर्श करते हैं यदि

  • [AIEEE 2011]

यदि एक वृत्त $C$, जिसकी त्रिज्या 3 है, एक अन्य वृत्त $x^{2}+y^{2}+2 x-4 y-4=0$ को बाह्य रूप से बिंदु $(2,2)$ पर स्पर्श करता है, तो वृत्त $C$ द्वारा $x$-अक्ष पर काटे गए अंतःखंड की लंबाई है

  • [JEE MAIN 2018]

माना

$A =\left\{( x , y ) \in R \times R \mid 2 x ^{2}+2 y ^{2}-2 x -2 y =1\right\},$

$B =\left\{( x , y ) \in R \times R \mid 4 x ^{2}+4 y ^{2}-16 y +7=0\right\}$  तथा

$C =\left\{( x , y ) \in R \times R \mid x ^{2}+ y ^{2}-4 x -2 y +5 \leq r ^{2}\right\}$ है। तो $| r |$ का निम्नतम मान, जिसके लिए $A \cup B \subseteq C$ है, बराबर है

  • [JEE MAIN 2021]

वृत्त $C_1:(x-4)^2+(y-5)^2=4$ की जीवाओं के मध्य बिन्दुओं का बिन्दुपथ जो वृत्त $C_1$ के केन्द्र पर कोण $\theta_i$ बनाता है, जिसकी त्रिज्या $r_i$ है। यदि $\theta_1=\frac{\pi}{3}$, $\theta_3=\frac{2 \pi}{3}$ तथा $\mathrm{r}_1^2=\mathrm{r}_2^2+\mathrm{r}_3^2$ है, तो $\theta_2$ बराबर है:

  • [JEE MAIN 2023]