જો પરવલય $y ^{2}=4 x$ નો નાભિલંબ એ જેની ત્રિજ્યા $2 \sqrt{5}$ હોય તેવા વર્તુળો $C _{1}$ અને $C _{2}$ બંનેના સામાન્ય ચાપ હોય તો બંને વર્તુળો $C _{1}$ અને $C _{2}$ ના કેન્દ્રો વચ્ચેનું અંતર મેળવો
$8$
$4 \sqrt{5}$
$12$
$8 \sqrt{5}$
બિંદુ $(a, b)$ માંથી પસાર થતા તથા વર્તૂળ ${x^2} + {y^2} = {p^2}$ ને લંબચ્છેદી હોય તેવા વર્તૂળના કેન્દ્રનો બિંદુગણનું સમીકરણ મેળવો.
જો વર્તૂળ $x^{2} + y^{2} = 10x$ ની જીવા $y = 2x $ હોય, તો જે વર્તૂળનો વ્યાસ આ જીવા હોય તે વર્તૂળનું સમીકરણ.....
આપલે વર્તુળમાટે ઉપરોક્ત વિધાનમાંથી સત્ય વિધાન મેળવો.
$x^{2}+y^{2}-10 x-10 y+41=0$ ; $x^{2}+y^{2}-22 x-10 y+137=0$
બિંદુઓ $(0, 0), (1, 0)$ માંથી પસાર થતા અને વર્તૂળ $x^2 + y^2 = 9$ ને સ્પર્શતા વર્તૂળનું કેન્દ્ર ....
વર્તુળનું સમીકરણ મેળવો કે જે વર્તુળો ${x^2} + {y^2} - 6x + 8 = 0$ અને ${x^2} + {y^2} = 6$ ના છેદબિંદુમાંથી પસાર થાય અને બિંદુ $(1, 1)$ માંથી પસાર થાય .