ધારો કે વર્તુળ $x^{2}+y^{2}+a x+2 a y+c=0$ $,(a < 0)$ એ $x-$ અક્ષ તથા $y-$અક્ષ સાથે અનુક્રમે $2 \sqrt{2}$ તથા $2 \sqrt{5}$ જેટલો અંતઃખંડ બનાવે છે. તો ઊગમબિંદુ થી રેખા $x +2 y =0$ ને લંબ હોય એવા આ વર્તુળનાં સ્પર્શકનું લઘુત્તમ અંતર ...... છે.
$\sqrt{11}$
$\sqrt{7}$
$\sqrt{6}$
$\sqrt{10}$
વર્તૂળ $ x^2 + y^2 = r^2$ દ્વારા રેખા $\frac{x}{a}\,\, + \;\,\frac{y}{b}\,\, = \,\,1$ પરના આંતર છેદથી બનતી જીવાની લંબાઈ....
જો રેખા $(x + g) cos\ \theta + (y +f) sin\theta = k$ વર્તૂળ $x^2 + y^2 + 2gx + 2fy + c =0$ , ને સ્પર્શેં, તો
વિધાન $(A)\ : \theta$ ના બધા મુલ્ય માટે રેખા $(x -3)\ cos\theta + (y - 3)\ sin\theta = 1$ એ વર્તૂળ $(x - 3)^2 + (y - 3)^2\,\,=1$ ને સ્પર્શેં છે.
કારણ $(R)$ : $\theta$ ના બધા મુલ્યો માટે $xcos\ \theta + y\ sin \theta =\,a$ એ વર્તૂળ $x^2 + y^2 = a^2$ ને સ્પર્શેં છે.
ધારોકે આપેલ વક્રના બધાજ બિંદુએ દોરેલ અભિલંબો એક નિશ્ચિત બિંદુ $(a, b)$ માંથી પસાર થાય છે. જે વક્ર $(3,-3)$ અને $(4,-2 \sqrt{2}),$ માંથી પસાર થાય અને $a-2 \sqrt{2} b=3,$ આપેલ હોય, તો $\left(a^{2}+b^{2}+a b\right)=....... .$
વર્તુળ $x^2 + y^2 = 4$ પરના બિંદુ $(\sqrt 3,1)$ પર આંતરેલ અભિલંબ અને સ્પર્શક તથા $x -$ અક્ષ થી બનતા ત્રિકોણનું ક્ષેત્રફળ ચો. એકમમાં મેળવો