माना रेखा $y = mx$ तथा दीर्घवृत $2 x ^{2}+ y ^{2}=1$, प्रथम चतुर्थांश में स्थित एक बिंदु $P$ पर काटते हैं। यदि इस दीर्घवृत्त का $P$ पर अभिलंब, निर्देशांक अक्षों को क्रमशः $\left(-\frac{1}{3 \sqrt{2}}, 0\right)$ तथा $(0, \beta)$ पर मिलता है, तो $\beta$ का मान है
$\frac{2}{\sqrt{3}}$
$\frac{2 \sqrt{2}}{3}$
$\frac{2 }{3}$
$\frac{\sqrt{2}}{3}$
$c$ के उन मानों की संख्या, जिनके लिये सरल रेखा $y = 4x + c$ वक्र $\frac{{{x^2}}}{4} + {y^2} = 1$ को स्पर्श करती है, है
यदि $OB$, एक दीर्घवृत्त का अर्ध लघुअक्ष है, $F _{1}$ तथा $F _{2}$ उसकी नाभियाँ हैं तथा $F _{1} B$ तथा $F _{2} B$ के बीच का कोण एक समकोण है, तो दीर्घवृत्त की उत्केंद्रता का वर्ग है
रेखा $lx + my - n = 0$, दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ को स्पर्श करेगी, यदि
उस दीर्घवृत्त का समीकरण जिसकी नाभियाँ के बीच की दूरी $8$ एवं नियताओं के बीच की दूरी $18$ है, होगा
दीर्घवृत्त $\frac{{{{(x - 1)}^2}}}{9} + \frac{{{{(y + 1)}^2}}}{{25}} = 1$ की उत्केन्द्रता है