माना रेखा $y = mx$ तथा दीर्घवृत $2 x ^{2}+ y ^{2}=1$, प्रथम चतुर्थांश में स्थित एक बिंदु $P$ पर काटते हैं। यदि इस दीर्घवृत्त का $P$ पर अभिलंब, निर्देशांक अक्षों को क्रमशः $\left(-\frac{1}{3 \sqrt{2}}, 0\right)$ तथा $(0, \beta)$ पर मिलता है, तो $\beta$ का मान है 

  • [JEE MAIN 2020]
  • A

    $\frac{2}{\sqrt{3}}$

  • B

    $\frac{2 \sqrt{2}}{3}$

  • C

    $\frac{2 }{3}$

  • D

    $\frac{\sqrt{2}}{3}$

Similar Questions

प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए

$b=3, c=4,$ केंद्र मूल बिंदु पर, नाभियाँ $x$ अक्ष पर

दीर्घवृत्त में नाभियों और शीर्षों के निर्देशांक, दीर्घ और लघु अक्ष की लंबाइयाँ, उत्केंद्रता तथा नाभिलंब जीवा की लंबाई ज्ञात कीजिए

$\frac{x^{2}}{16}+\frac {y^2} {9}=1$

दीर्घवृत्त $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{5} = 1$ की नाभिलम्ब जीवा के सिरों पर स्पर्शियों से निर्मित चतुभ्र्ज का क्षेत्रफल ............. वर्ग इकाई होगा

  • [IIT 2003]

यदि दीर्घवृत्त $3 x ^{2}+4 y ^{2}=12$ के एक बिन्दु $P$ पर अभिलम्ब, रेखा $2 x + y =4$ के समान्तर है तथा $P$ पर दीर्घवृत की स्पर्श रेखा $Q (4,4)$ से होकर जाती है, तो $PQ$ बराबर हैं 

  • [JEE MAIN 2019]

यदि दीर्घवृत्त $\frac{{{x^2}}}{{18}} + \frac{{{y^2}}}{{32}} = 1$ पर खींची गयी स्पश्री जिसकी प्रवणता $ - \frac{4}{3}$ है, क्रमश: दीर्घ व लघु अक्षों को $A$ व $B$ पर काटती है, तो $\Delta OAB$ का क्षेत्रफल ............... वर्ग इकाई होगा ($O$ दीर्घवृत्त का केन्द्र है)