रेखा $5x + 12y + 8 = 0$ के लम्बवत् वृत्त ${x^2} + {y^2} - 22x - 4y + 25 = 0$ की स्पर्श रेखाओं के समीकरण हैं
$12x - 5y + 8 = 0$, $12x - 5y = 252$
$12x - 5y = 0,\,\,12x - 5y = 252$
$12x - 5y - 8 = 0,\,12x - 5y + 252 = 0$
इनमें से कोई नहीं
रेखा $x + 2y = 3$ के समान्तर, वृत्त ${x^2} + {y^2} - 2x = 0$ के अभिलम्ब का समीकरण है
एक वृत्त $C$, बिन्दु $(4,0)$ से होकर जाता है तथा वृत्त $x ^{2}+ y ^{2}+4 x -6 y =12$ को बिन्दु $(1,-1)$ पर बाह्य स्पर्श करता है, तो $C$ की त्रिज्या है
यदि बिन्दु $(5, 3)$ से वृत्त ${x^2} + {y^2} + 2x + ky + 17 = 0$ पर खींची गई स्पर्श रेखा की लम्बाई $7$ हो, तो $k$ =
बिन्दु $(0, 1)$ से वृत्त ${x^2} + {y^2} - 2x + 4y = 0$ पर खींची गयी स्पर्श रेखाओं के समीकरण हैं
माना एक वक्र के प्रत्येक बिंदु पर अभिलम्ब, बिन्दु $(a, b)$ से होकर जाते है। यदि यह वक्र बिंदुओं $(3,-3)$ तथा $(4,-2 \sqrt{2})$, से होकर जाता है, तथा $a -2 \sqrt{2} b =3$, तो $\left( a ^{2}+ b ^{2}+ ab \right)$ बराबर है