Let the sequence $a_{n}$ be defined as follows:
${a_1} = 1,{a_n} = {a_{n - 1}} + 2$ for $n\, \ge \,2$
Find first five terms and write corresponding series.
We have
$a_{1}=1, a_{2}=a_{1}+2=1+2=3, a_{3}=a_{2}+2=3+2=5$
$a_{4}=a_{3}+2=5+2=7, a_{5}=a_{4}+2=7+2=9$
Hence, the first five terms of the sequence are $1,3,5,7$ and $9 .$ The corresponding series is $1+3+5+7+9+\ldots$
In an $A.P.,$ the first term is $2$ and the sum of the first five terms is one-fourth of the next five terms. Show that $20^{th}$ term is $-112$
Shamshad Ali buys a scooter for $Rs$ $22000 .$ He pays $Rs$ $4000$ cash and agrees to pay the balance in annual instalment of $Rs$ $1000$ plus $10 \%$ interest on the unpaid amount. How much will the scooter cost him?
Let $AP ( a ; d )$ denote the set of all the terms of an infinite arithmetic progression with first term a and common difference $d >0$. If $\operatorname{AP}(1 ; 3) \cap \operatorname{AP}(2 ; 5) \cap \operatorname{AP}(3 ; 7)=\operatorname{AP}( a ; d )$ then $a + d$ equals. . . . .
The sum of $24$ terms of the following series $\sqrt 2 + \sqrt 8 + \sqrt {18} + \sqrt {32} + .........$ is
The sides of a right angled triangle are in arithmetic progression. If the triangle has area $24$ , then what is the length of its smallest side ?