1.Relation and Function
hard

माना फलन $\mathrm{f}(\mathrm{x})=\frac{1}{\sqrt{\lceil\mathrm{x}\rceil-\mathrm{x}}}$ जहाँ $\lceil\mathrm{x}\rceil$ न्यूनतम पूर्णांक $\geq x$ है, के प्रांत तथा परिसर क्रमशः समुच्चय $A$ तथा $B$ है। तो कथनों

$(\mathrm{S} 1): \mathrm{A} \cap \mathrm{B}=(1, \infty)-\mathrm{N}$ तथा

$(\mathrm{S} 2): \mathrm{A} \cup \mathrm{B}=(1, \infty)$ में

A

केवल $(S1)$ सत्य है

B

दोनों $(S1)$ तथा $(S2)$ सत्य हैं

C

न तो $(\mathrm{S} 1)$ न ही $(\mathrm{S} 2)$ सत्य है

D

केवल $(S2)$ सत्य है

(JEE MAIN-2023)

Solution

$f(x)=\frac{1}{\sqrt{\lceil x\rceil-x}}$

If $x \in I \lceil x \rceil=[ x ]$ (greatest integer function)

If $x \notin I \lceil x \rceil=[ x ]+1$

$\Rightarrow f(x)=\left\{\begin{array}{l}\frac{1}{\sqrt{[x]-x}}, x \in I \frac{1}{\sqrt{[x]+1-x}}, x \notin I\end{array}\right.$

$\begin{aligned} & \Rightarrow f(x)=\left\{\begin{array}{l}\frac{1}{\sqrt{-\{x\}}}, x \in I, \text { (does not exist) } \\ \frac{1}{\sqrt{1-\{x\}}}, x \notin I\end{array}\right. \\ & \Rightarrow \text { domain of } f(x)=R-I\end{aligned}$

$\text { Now, } f(x)=\frac{1}{\sqrt{1-\{x\}}}, x \notin I$

$\Rightarrow 0 < \{x\} < 1$

$\Rightarrow 0 < \sqrt{1-\{x\}} < 1$

$\Rightarrow \frac{1}{\sqrt{1-\{x\}}} > 1$

$\Rightarrow \text { Range }(1, \infty)$

$\Rightarrow A=R-I$

$B=(1, \infty)$

$\text { So, } A \cap B=(1, \infty)-N$

$A \cup B \neq(1, \infty)$

$\Rightarrow S 1 \text { is only correct }$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.