Let the sum of the first $n$ terms of a non-constant $A.P., a_1, a_2, a_3, ……$ be $50\,n\, + \,\frac{{n\,(n\, - 7)}}{2}A,$ where $A$ is a constant. If $d$ is the common difference of this $A.P.,$ then the ordered pair $(d,a_{50})$ is equal to
$(A, 50 + 46A)$
$(A, 50 + 45A)$
$(50, 50 + 45A)$
$(50, 50 + 46A)$
If $f(x + y,x - y) = xy\,,$ then the arithmetic mean of $f(x,y)$ and $f(y,x)$ is
If the sum of first $p$ terms of an $A.P.$ is equal to the sum of the first $q$ terms, then find the sum of the first $(p+q)$ terms.
A number is the reciprocal of the other. If the arithmetic mean of the two numbers be $\frac{{13}}{{12}}$, then the numbers are
If ${a_1},\;{a_2},............,{a_n}$ are in $A.P.$ with common difference , $d$, then the sum of the following series is $\sin d(\cos {\rm{ec}}\,{a_1}.co{\rm{sec}}\,{a_2} + {\rm{cosec}}\,{a_2}.{\rm{cosec}}\,{a_3} + ...........$$ + {\rm{cosec}}\;{a_{n - 1}}{\rm{cosec}}\;{a_n})$
The solution of ${\log _{\sqrt 3 }}x + {\log _{\sqrt[4]{3}}}x + {\log _{\sqrt[6]{3}}}x + ......... + {\log _{\sqrt[{16}]{3}}}x = 36$ is