- Home
- Standard 11
- Mathematics
Let the sum of the first $n$ terms of a non-constant $A.P., a_1, a_2, a_3, ……$ be $50\,n\, + \,\frac{{n\,(n\, - 7)}}{2}A,$ where $A$ is a constant. If $d$ is the common difference of this $A.P.,$ then the ordered pair $(d,a_{50})$ is equal to
$(A, 50 + 46A)$
$(A, 50 + 45A)$
$(50, 50 + 45A)$
$(50, 50 + 46A)$
Solution
${S_n} = 50n + \frac{{n\left( {n – 7} \right)}}{2}A$
${T_n} = {S_n} – {S_{n – 1}}$
$ = 50n + \frac{{n\left( {n – 7} \right)}}{2}A – 50\left( {n – 1} \right) – \frac{{\left( {n – 1} \right)\left( {n – 8} \right)}}{2}A$
$ = 50 + \frac{A}{2}\left[ {{n^2} – 7n – {n^2} + 9n – 8} \right]$
$ = 50 + A\left( {n – 4} \right)$
$d = {T_n} – {T_{n – 1}}$
$ = 50 + A\left( {n – 4} \right) – 50 – A\left( {n – 5} \right)$
$ = A$
${T_{50}} = 50 + 46A$
$\left( {d,{A_{50}}} \right) = \left( {A,50 + 46A} \right)$