8. Sequences and Series
hard

સમાંતર શ્રેણી $a_1, a_2, a_3, ……$ ના પ્રથમ $n$ પદોનો સરવાળો $50\,n\, + \,\frac{{n\,(n\, - 7)}}{2}A$ છે.    જ્યાં $A$ અચળ છે જો $d$ સમાંતર શ્રેણીનો સામાન્ય તફાવત હોય તો $(d,a_{50})$ ની કિમત મેળવો. 

A

$(A, 50 + 46A)$

B

$(A, 50 + 45A)$

C

$(50, 50 + 45A)$

D

$(50, 50 + 46A)$

(JEE MAIN-2019)

Solution

${S_n} = 50n + \frac{{n\left( {n – 7} \right)}}{2}A$

${T_n} = {S_n} – {S_{n – 1}}$

$ = 50n + \frac{{n\left( {n – 7} \right)}}{2}A – 50\left( {n – 1} \right) – \frac{{\left( {n – 1} \right)\left( {n – 8} \right)}}{2}A$

$ = 50 + \frac{A}{2}\left[ {{n^2} – 7n – {n^2} + 9n – 8} \right]$

$ = 50 + A\left( {n – 4} \right)$

$d = {T_n} – {T_{n – 1}}$

$ = 50 + A\left( {n – 4} \right) – 50 – A\left( {n – 5} \right)$

$ = A$

${T_{50}} = 50 + 46A$

$\left( {d,{A_{50}}} \right) = \left( {A,50 + 46A} \right)$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.