સમાંતર શ્રેણી $a_1, a_2, a_3, ……$ ના પ્રથમ $n$ પદોનો સરવાળો $50\,n\, + \,\frac{{n\,(n\, - 7)}}{2}A$ છે. જ્યાં $A$ અચળ છે જો $d$ સમાંતર શ્રેણીનો સામાન્ય તફાવત હોય તો $(d,a_{50})$ ની કિમત મેળવો.
$(A, 50 + 46A)$
$(A, 50 + 45A)$
$(50, 50 + 45A)$
$(50, 50 + 46A)$
જો $a, b$ અને $c$ સમાંતર શ્રેણીમાં હોય, તો $2^{ax + 1}, 2^{bx + 1},$ અને $2^{cx + 1} , x \neq 0$ એ.....
જો શ્રેણીના $n $ પદોનો સરવાળો $3n^2 + 4n$ ; થાય, તો તે કઈ શ્રેણી હોય ?
જો $\left\{a_{i}\right\}_{i=1}^{n}$ એ સામાન્ય તફાવત 1 હોય તેવી સમાંતર શ્રેણી છે, જ્યાં $n$ એ યુગ્મ પૂર્ણાંક હોય અને $\sum \limits_{ i =1}^{ n } a _{ i }=192,\sum \limits_{ i =1}^{ n / 2} a _{2 i }=120$ હોય, તો $n$ = ........
જો બે સમાંતર શ્રેણીઓના $n$ પદોના સરવાળાનો ગુણોત્તર $(7n + 1); (4n + 27),$ હોય, તો તેમના $11$ માં પદોનો ગુણોત્તર કેટલો થાય ?
જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં પ્રથમ પાંચ પદ લખો : $a_{n}=\frac{n}{n+1}$