ધારોકે ઉપવલય $\frac{x^2}{36}+\frac{y^2}{4}=1$ પર ના બિંદુ $(3 \sqrt{3}, 1)$ પાસે ના સ્પર્શક અને અભિલંબ $x$-અક્ષને અનુક્રમે બિંદુ $A$ અને $B$ માં મળે છે. ધારોકે $AB$ ને વ્યાસ તરીકે લેતા વર્તુળ $C$ દોરી શકાય છે અને રેખા $x=2 \sqrt{5}$ એ $\alpha^2-\beta^2=........$
$\frac{314}{5}$
$\frac{304}{5}$
$60$
$61$
વર્તુળની ત્રિજ્યા મેળવો કે જેનું કેન્દ્ર $(0, 3)$ હોય અને જે ઉપવલય $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1$ ની નાભીમાંથી પસાર થાય છે .
જો ઉપવલય $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{4 a^{2}}=1$ ના સ્પર્શક અને યામક્ષો દ્વારા બનતા ત્રિકોણનું ન્યૂનતમ ક્ષેત્રફળ $kab$ હોય તો $\mathrm{k}$ ની કિમંત મેળવો.
ઉપવલયમાં તેની નાભિઓ વચ્ચેનું અંતર $6$ અને પ્રધાન અક્ષ $8$ છે. તો તેની ઉત્કેન્દ્રતા.....
જો ઉપવલયને વર્તૂળ ${\left( {x - 1} \right)^2} + {y^2} = 1$ ના વ્યાસને અર્ધ-ગૌણ અક્ષ તરીકે લેવામાં આવે છે અને વર્તૂળ ${x^2} + {\left( {y - 2} \right)^2} = 4$ ના વ્યાસને અર્ધ-પ્રધાન અક્ષ તરીકે લેવામાં આવે છે.જો ઉપવલયનું કેન્દ્ર ઊગમબિંદુ હોય અને અક્ષો યામાક્ષો હોય,તો ઉપવલયનું સમીકરણ મેળવો.
ઉપવલય $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{5} = 1$ ની નાભિલંબના અત્યબિંદુએ દોરવામાં આવેલ સ્પર્શક દ્વારા બનતા ચતુષ્કોણનું ક્ષેત્રફળ ............... $\mathrm{sq. \, units}$ મેળવો.