माना वृत्त $C _1: x^2+y^2=2$ के बिन्दु $M (-1,1)$ पर खीची गई स्पर्श रेखा, वृत्त $C _2:( x -3)^2+(y-2)^2=5$ को दो विभिन्न बिन्दुओं $A$ तथा $B$ पर प्रतिच्छेद करती हे। यदि वृत्त $C _2$ के बिन्दु $A$ तथा $B$ पर खीची गई स्पर्श रेखा $N$ पर काटती है, तो त्रिभुज $ANB$ का क्षेत्रफल है :
$\frac{1}{2}$
$\frac{2}{3}$
$\frac{1}{6}$
$\frac{5}{3}$
यदि $5x - 12y + 10 = 0$ तथा $12y - 5x + 16 = 0$ किसी वृत्त की स्पर्शियों के समीकरण हैं, तब इस वृत्त की त्रिज्या है
रेखा $x\cos \alpha + y\sin \alpha = p$, वृत्त ${x^2} + {y^2} - 2ax\cos \alpha - 2ay\sin \alpha = 0$ की स्पर्श रेखा होगी, यदि $p = $
यदि वृत्त $S \equiv {x^2} + {y^2} + 2gx + 2fy + c = 0$ द्वारा बिन्दु $P({x_1},{y_1})$ पर अन्तरित कोण $\theta $ हो, तो
रेखा $3x - 2y = k$, वृत्त ${x^2} + {y^2} = 4{r^2}$ को केवल एक बिन्दु पर मिलती है, यदि ${k^2}$ =
वृत्त ${x^2} + {y^2} = 50$ के उन बिन्दुओं पर, जहाँ रेखा $x + 7 = 0$ इसको काटती है, स्पर्श रेखाओं के समीकरण हैं