ધારો કે વર્તુળ $C _{1}: x^{2}+y^{2}=2$ ના બિંદુ $M (-1,1)$ આગળનો સ્પર્શક એ વર્તુળ $C _{2}:(x-3)^{2}+(y-2)^{2}=5$ ને બે ભિન્ન બિંદુઓ $A$ અને $B$ માં છેદ્દે છે. ને $C_{2}$ ના બિંદુઓ $A$ અને $B$ આગળના સ્પર્શકો $N$ માં છેદે, તો ત્રિકોણ $ANB$ નું ક્ષેત્રફળ$=\dots\dots$
$\frac{1}{2}$
$\frac{2}{3}$
$\frac{1}{6}$
$\frac{5}{3}$
ઉગમબિદુમાંથી વર્તૂળ ${(x - 1)^2} + {y^2} = 1$ પર જીવા દોરવાંમા આવે છે. તો આ જીવાના મધ્યબિંદુના બિંદુપથનું સમીકરણ મેળવો.
ઉગમબિંદુમાંથી વર્તૂળ $ (x - 7)^2 + (y + 1)^2 = 25$ દોરેલા સ્પર્શકો વચ્ચેનો ખૂણો ....
વર્તૂળ $x^2 + y^2 - 5x + 2y - 48 = 0$ પર બિંદુ $(5, 6)$ આગળ દોરેલ અભિલંબનું સમીકરણ શોધો.
બે વર્તુળો કે જેની ત્રિજ્યા $5\,$ એકમ છે તેઓ એકબીજા ને બિંદુ $(1,2)$ આગળ સ્પર્શે છે. જો તેઓના સામાન્ય સ્પર્શકનું સમીકરણ $4 \mathrm{x}+3 \mathrm{y}=10$ છે અને $\mathrm{C}_{1}(\alpha, \beta)$ અને $\mathrm{C}_{2}(\gamma, \delta)$, $\mathrm{C}_{1} \neq \mathrm{C}_{2}$ એ તેઓના કેન્દ્રો છે તો $|(\alpha+\beta)(\gamma+\delta)|$ ની કિંમત મેળવો.
રેખા $ax + by + c = 0$ એ વર્તૂળ $x^2 + y^2 = r^2$ નો અભિલંબ છે. વર્તૂળ દ્વારા $ax + by + c = 0$ રેખા પર અંત:ખંડનાં ભાગની લંબાઈ :