The locus of a point $P(\alpha ,\,\beta )$ moving under the condition that the line $y = \alpha x + \beta $ is a tangent to the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ is
A parabola
A hyperbola
An ellipse
A circle
If the eccentricity of the hyperbola $x^2 - y^2 \sec^2 \alpha = 5$ is $\sqrt 3 $ times the eccentricity of the ellipse $x^2 \sec^2 \alpha + y^2 = 25, $ then a value of $\alpha$ is :
If the tangent on the point $(2\sec \phi ,\;3\tan \phi )$ of the hyperbola $\frac{{{x^2}}}{4} - \frac{{{y^2}}}{9} = 1$ is parallel to $3x - y + 4 = 0$, then the value of $\phi$ is ............ $^o$
The one which does not represent a hyperbola is
The equation of the hyperbola whose foci are $(-2, 0)$ and $(2, 0)$ and eccentricity is $2$ is given by :-
If the foci of the ellipse $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{{b^2}}} = 1$ coincide with the foci of the hyperbola $\frac{{{x^2}}}{{144}} - \frac{{{y^2}}}{{81}} = \frac{1}{{25}},$ then $b^2$ is equal to