The locus of a point $P(\alpha ,\,\beta )$ moving under the condition that the line $y = \alpha x + \beta $ is a tangent to the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ is
A parabola
A hyperbola
An ellipse
A circle
Length of latus rectum of hyperbola $\frac{{{x^2}}}{{{{\cos }^2}\alpha }} - \frac{{{y^2}}}{{{{\sin }^2}\alpha }} = 4\,is\,\left( {\alpha \ne \frac{{n\pi }}{2},n \in I} \right)$
Find the equation of the hyperbola satisfying the give conditions: Vertices $(0,\,\pm 3),$ foci $(0,\,±5)$
An ellipse intersects the hyperbola $2 x^2-2 y^2=1$ orthogonally. The eccentricity of the ellipse is reciprocal of that of the hyperbola. If the axes of the ellipse are along the coordinate axes, then
$(A)$ Equation of ellipse is $x^2+2 y^2=2$
$(B)$ The foci of ellipse are $( \pm 1,0)$
$(C)$ Equation of ellipse is $x^2+2 y^2=4$
$(D)$ The foci of ellipse are $( \pm \sqrt{2}, 0)$
The graph of the conic $x^2-(y-1)^2=1$ has one tangent line with positive slope that passes through the origin. The point of the tangency being $(a, b)$ then find the value of $\sin ^{-1}\left(\frac{a}{b}\right)$
The equation of the tangent parallel to $y - x + 5 = 0$ drawn to $\frac{{{x^2}}}{3} - \frac{{{y^2}}}{2} = 1$ is