माना परवलय $y^2=12 x$ के बिंदु $(3, \alpha)$ पर स्पर्श रेखा, रेखा $2 x+2 y=3$ के लंबवत है। तो बिंदु $(6,-4)$ की, अतिपरवलय $\alpha^2 x^2-9 y^2=9 \alpha^2$ के बिंदु $(\alpha-1, \alpha+2)$ पर अभिलंब से दूरी का वर्ग है

  • [JEE MAIN 2023]
  • A

    $116$

  • B

    $115$

  • C

    $114$

  • D

    $113$

Similar Questions

 अतिपरवलय $9{x^2} - 16{y^2} + 18x + 32y - 151 = 0$ का केन्द्र है  

माना $0 < \theta < \frac{\pi}{2}$ है। यदि अतिपरवलय $\frac{x^{2}}{\cos ^{2} \theta}-\frac{y^{2}}{\sin ^{2} \theta}=1$ की उत्केंद्रता $2$ से अधिक है , तो इसके नाभिलंब की लंबाई जिस अंतराल में है, वह है-

  • [JEE MAIN 2019]

अतिपरवलय $16{x^2} - 9{y^2} = 144$ पर कोई बिन्दु $P$  है। यदि ${S_1}$ तथा ${S_2}$ इसकी नाभियाँ हों, तो $P{S_1} - P{S_2} = $

माना दीर्घवृत्त $\frac{x^2}{16}+\frac{y^2}{7}=1$ तथा अतिपरवलय $\frac{x^2}{144}-\frac{y^2}{\alpha}=\frac{1}{25}$ की नाभियाँ सम्पाती हैं। तो अतिपरवलय के नाभिलंब जीवा की लंबाई है :

  • [JEE MAIN 2022]

माना अतिपरवलय $H : \frac{ x ^2}{ a ^2}-\frac{ y ^2}{ b ^2}=1$, बिंदु $(2 \sqrt{2},-2 \sqrt{2})$ से होकर जाता है। एक परवलय खींचा जाता है जिसकी नाभि, $H$ की धनात्मक भुज वाली नाभि पर है तथा परवलय की नियता $H$ की दूसरी नाभि से होकर जाती है। यदि परवलय की नाभि लंब जीवा की लंबाई, $H$ की नाभि लंब जीवा की लंबाई का $e$ गुना है, जहाँ $e$, $H$ की उत्केन्द्रता है, तो निम्न में से कौन सा बिंदु परवलय पर है ?

  • [JEE MAIN 2022]