Let the tangents at two points $A$ and $B$ on the circle $x ^{2}+ y ^{2}-4 x +3=0$ meet at origin $O (0,0)$. Then the area of the triangle of $OAB$ is.

  • [JEE MAIN 2022]
  • A

    $\frac{3 \sqrt{3}}{2}$

  • B

    $\frac{3 \sqrt{3}}{2}$

  • C

    $\frac{3}{2 \sqrt{3}}$

  • D

    $\frac{3}{4 \sqrt{3}}$

Similar Questions

Two circles each of radius $5\, units$ touch each other at the point $(1,2)$. If the equation of their common tangent is $4 \mathrm{x}+3 \mathrm{y}=10$, and $\mathrm{C}_{1}(\alpha, \beta)$ and $\mathrm{C}_{2}(\gamma, \delta)$, $\mathrm{C}_{1} \neq \mathrm{C}_{2}$ are their centres, then $|(\alpha+\beta)(\gamma+\delta)|$ is equal to .... .

  • [JEE MAIN 2021]

Statement $1$ : The only circle having radius $\sqrt {10} $ and a diameter along line $2x + y = 5$ is $x^2 + y^2 - 6x +2y = 0$.
Statement $2$ : $2x + y = 5$ is a normal to the circle $x^2 + y^2 -6x+2y = 0$.

  • [JEE MAIN 2013]

Let the tangents at the points $A (4,-11)$ and $B (8,-5)$ on the circle $x^2+y^2-3 x+10 y-15=0$, intersect at the point $C$. Then the radius of the circle, whose centre is $C$ and the line joining $A$ and $B$ is its tangent, is equal to

  • [JEE MAIN 2023]

Pair of tangents are drawn from every point on the line $3x + 4y = 12$ on the circle $x^2 + y^2 = 4$. Their variable chord of contact always passes through a fixed point whose co-ordinates are

In the given figure, $AB$ is tangent to the circle with centre $O$ , the ratio of the shaded region to the unshaded region of the triangle $OAB$ is