Mean and standard deviation of 100 observations were found to be 40 and 10 , respectively. If at the time of calculation two observations were wrongly taken as 30 and 70 in place of 3 and 27 respectively, find the correct standard deviation.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Given, $n=100, \bar{x}=40$ and $\sigma=10$

$\therefore \quad \frac{\Sigma x_{i}}{n}=40$

$\Rightarrow \quad \frac{\Sigma x_{i}}{100}=40$

$\Rightarrow \quad \Sigma x_{i}=4000$

Now, Corrected $\Sigma x_{i}=4000-30-70+3+27=3930$

Corrected mean $=\frac{2930}{100}=39.3$

Now, $\sigma^{2}=\frac{\Sigma x_{i}^{2}}{n}-\left(\frac{\Sigma x_{i}}{n}\right)^{2}=\frac{\Sigma x_{i}^{2}}{n}-(40)^{2}$

$\Rightarrow \quad 100=\frac{\Sigma x_{i}^{2}}{100}-1600$

$\Rightarrow \quad \Sigma x_{i}^{2}=170000$

Now, $\quad$ Corrected $\Sigma x_{i}^{2}=170000-(30)^{2}-(70)^{2}+3^{2}+(27)^{2}=164938$

Corrected $\sigma=\sqrt{\frac{164938}{100}-(39.3)^{2}}=\sqrt{1649.38-1544.49}=\sqrt{104.9}$

$=10.24$

Similar Questions

If the data $x_1, x_2, ...., x_{10}$ is such that the mean of first four of these is $11$, the mean of the remaining six is $16$ and the sum of squares of all of these is $2,000$; then the standard deviation of this data is

  • [JEE MAIN 2019]

The mean of five observations is $5$ and their variance is $9.20$. If three of the given five observations are $1, 3$ and $8$, then a ratio of other two observations is

  • [JEE MAIN 2019]

Let $X=\{11,12,13, \ldots ., 40,41\}$ and $Y=\{61,62$, $63, \ldots ., 90,91\}$ be the two sets of observations. If $\bar{x}$ and $\bar{y}$ are their respective means and $\sigma^2$ is the variance of all the observations in $X \cup Y$, then $\left|\overline{ x }+\overline{ y }-\sigma^2\right|$ is equal to $.................$.

  • [JEE MAIN 2023]

If the variance of the frequency distribution is $3$ then $\alpha$ is ......

$X_i$ $2$ $3$ $4$ $5$ $6$ $7$ $8$
Frequency $f_i$ $3$ $6$ $16$ $\alpha$ $9$ $5$ $6$

 

  • [JEE MAIN 2023]

If the mean deviation about median for the number $3,5,7,2\,k , 12,16,21,24$ arranged in the ascending order, is $6$ then the median is

  • [JEE MAIN 2022]