Mean and standard deviation of 100 observations were found to be 40 and 10 , respectively. If at the time of calculation two observations were wrongly taken as 30 and 70 in place of 3 and 27 respectively, find the correct standard deviation.
Given, $n=100, \bar{x}=40$ and $\sigma=10$
$\therefore \quad \frac{\Sigma x_{i}}{n}=40$
$\Rightarrow \quad \frac{\Sigma x_{i}}{100}=40$
$\Rightarrow \quad \Sigma x_{i}=4000$
Now, Corrected $\Sigma x_{i}=4000-30-70+3+27=3930$
Corrected mean $=\frac{2930}{100}=39.3$
Now, $\sigma^{2}=\frac{\Sigma x_{i}^{2}}{n}-\left(\frac{\Sigma x_{i}}{n}\right)^{2}=\frac{\Sigma x_{i}^{2}}{n}-(40)^{2}$
$\Rightarrow \quad 100=\frac{\Sigma x_{i}^{2}}{100}-1600$
$\Rightarrow \quad \Sigma x_{i}^{2}=170000$
Now, $\quad$ Corrected $\Sigma x_{i}^{2}=170000-(30)^{2}-(70)^{2}+3^{2}+(27)^{2}=164938$
Corrected $\sigma=\sqrt{\frac{164938}{100}-(39.3)^{2}}=\sqrt{1649.38-1544.49}=\sqrt{104.9}$
$=10.24$
If the data $x_1, x_2, ...., x_{10}$ is such that the mean of first four of these is $11$, the mean of the remaining six is $16$ and the sum of squares of all of these is $2,000$; then the standard deviation of this data is
The mean of five observations is $5$ and their variance is $9.20$. If three of the given five observations are $1, 3$ and $8$, then a ratio of other two observations is
Let $X=\{11,12,13, \ldots ., 40,41\}$ and $Y=\{61,62$, $63, \ldots ., 90,91\}$ be the two sets of observations. If $\bar{x}$ and $\bar{y}$ are their respective means and $\sigma^2$ is the variance of all the observations in $X \cup Y$, then $\left|\overline{ x }+\overline{ y }-\sigma^2\right|$ is equal to $.................$.
If the variance of the frequency distribution is $3$ then $\alpha$ is ......
$X_i$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ |
Frequency $f_i$ | $3$ | $6$ | $16$ | $\alpha$ | $9$ | $5$ | $6$ |
If the mean deviation about median for the number $3,5,7,2\,k , 12,16,21,24$ arranged in the ascending order, is $6$ then the median is