ગોસના નિયમના ઉપયોગો જણાવો.
ગાઉસના પ્રમેયના ઉપયોગો નીયે મુજ્બ છે :
$(1)$ અનંત લંબાઈના વિદ્યુતભારિત સુરેખ તાર (સુરેખીય નિયમિત વિદ્યુતભાર વિતરણા) વડે ઉદ્ભવતું વિદ્યુતક્ષેત્ર મેળવવા.
$(2)$ અનંત વિસ્તારના સમતલીય સમાન વિદ્યુતભાર વિતરણ વડે ઉદ્ભવતું વિદ્યુતક્ષેત્ર મેળવવા.
$(3)$ વિદ્યુતભારિત પાતળા ગોળીય કવચ વડે ઉદભવતું વિદ્યુતક્ષેત્ર મેળવવા.
$(4)$ સમાન વિદ્યુત ઘનતાવાળા ગોળ વડે ઉદ્ભવતા ગોળાની અંદર અને બહારનાં વિદ્યુતક્ષેત્રો મેળવવા.
નીચે આપેલા સમાન રીતે વિધુતભારિત ઉદ્ભવતાં વિધુતક્ષેત્રનું સૂત્ર મેળવો.
$(i)$ અનંત સમતલ વડે
$(ii)$ પાતળી ગોળાકાર કવચને લીધે તેની બહારના બિંદુએ
$(iii)$ પાતળી ગોળાકાર કવચના લીધે તેની અંદરના બિંદુએ
પરમાણુ માટેના પ્રારંભિક મોડેલમાં, $Ze$ વિદ્યુતભાર ધરાવતું ધન વિધુતભારિત બિંદુવતુ ન્યુક્લિયસ તેની આસપાસ $R$ ત્રિજ્યા સુધી નિયમિત ઘનતાના ઋણ વિધુતભાર વડે ઘેરાયેલું છે. સમગ્રપણે પરમાણુ તટસ્થ છે. આ મૉડેલ માટે ન્યુક્લિયસથી $r$ અંતરે વિધુતક્ષેત્ર કેટલું હશે ?
ગાઉસના પ્રમેય પરથી કુલંબનો નિયમ સમજાવો.
દરેક પ્લેટની સપાટીનું ક્ષેત્રફળ $\mathrm{S}$ હોય તેવી બે સમાન વાહક પ્લેટો $\alpha $ અને $\beta $ જડિત કરેલી છે અને તેમના પર અનુક્રમે $-\mathrm{q}$ અને $\mathrm{q}$ વિધુતભાર છે. જ્યાં $Q{\rm{ }}\, > \,{\rm{ }}q{\rm{ }}\, > \,{\rm{ }}0.$ એક ત્રીજી પ્લેટ $\gamma $ ને આ બે પ્લેટોની વચ્ચે મૂકવામાં આવે છે તે મુક્ત રીતે ગતિ કરી શકે છે તથા તેના પર $\mathrm{q}$ વિધુતભાર છે જે આકૃતિમાં દર્શાવ્યું છે. ત્રીજી પ્લેટને મુક્ત કરતાં તે $\beta $ પ્લેટ સાથે અથડાય છે. એવું ધારવામાં આવે છે કે અથડામણ સ્થિતિસ્થાપક છે અને $\beta $ અને $\gamma $ પ્લેટો પરના વિધુતભારને વહેંચાવા માટે અથડામણો વચ્ચેનો પૂરતો સમય છે.
$(a)$ અથડામણ પહેલા $\gamma $ પ્લેટ પર લાગતું વિધુતક્ષેત્ર શોધો.
$(b)$ અથડામણ બાદ $\beta $ અને $\gamma $ પ્લેટો પરના વિધુતભાર શોધો.
$(c)$ અથડામણ પછી $\gamma $ પ્લેટનો $\mathrm{B}$ પ્લેટથી $\mathrm{d}$ અંતરે હોય ત્યારનો વેગ શોધો.
$R$ ત્રિજયાના ગોળાના કેન્દ્રથી અંતર નો વિદ્યુતક્ષેત્ર $E$ વિરુધ્ધનો આલેખ કેવો થાય?