दीर्घवृत्त ${e_1}$ के किसी बिन्दु पर स्पर्श रेखा तथा अक्षों से निर्मित त्रिभुज का न्यूनतम क्षेत्रफल है

  • [IIT 2005]
  • A

    $\frac{{{a^2} + {b^2}}}{2}$

  • B

    $\frac{{{{(a + b)}^2}}}{2}$

  • C

    $ab$

  • D

    $\frac{{{{(a - b)}^2}}}{2}$

Similar Questions

दीर्घवृत्त $9{x^2} + 5{y^2} = 45$ के नाभियों के बीच की दूरी है

यदि दीर्घवृत्त की नाभियाँ तथा शीर्ष क्रमश: $( \pm 1,\;0)$ तथा $( \pm 2,\;0)$ हों, तो उसका लघु अक्ष है

ऐसी दो सरल रेखाओं (straight lines) पर विचार कीजिये, जिनमें से प्रत्येक, वृत्त (circle) $x^2+y^2=\frac{1}{2}$ और परवलय (parabola) $y^2=4 x$ दोनों पर ही स्पर्शी (tangent) है। माना कि ये रेखाएं बिंदु $Q$ पर प्रतिच्छेद (intersect) करती हैं। एक ऐसे दीर्घवृत्त (ellipse) पर विचार कीजिये जिसका केंद्र (centre) मूलर्बिंदु (origin) $O(0,0)$ पर है और जिसका अर्ध-दीर्घाक्ष (semi-major axis) $O Q$ है। यदि इस दीर्घवृत के लघु अक्ष (minor axis) की लम्बाई $\sqrt{2}$ है, तब निम्नलिखित में से कौन सा (से) कथन सत्य है (हैं)?

$(A)$ दीर्घवृत्त की उत्केन्द्रता (eccentricity) $\frac{1}{\sqrt{2}}$ है और नाभिलम्ब जीवा (latus rectum) की लम्बाई 1 है

$(B)$ दीर्घवृत्त की उत्केन्द्रता $\frac{1}{2}$ है और नाभिलम्ब जीवा की लम्बाई $\frac{1}{2}$ है

$(C)$ रेखाओं $x=\frac{1}{\sqrt{2}}$ व $x=1$ के बीच दीर्घवृत्त द्वारा परिबद्ध (bounded) क्षेत्र (region) का क्षेत्रफल (area) $\frac{1}{4 \sqrt{2}}(\pi-2)$ है

$(D)$ रेखाओं $x=\frac{1}{\sqrt{2}}$ व $x=1$ के बीच दीर्घवृत्त द्वारा परिबद्ध क्षेत्र का क्षेत्रफल $\frac{1}{16}(\pi-2)$ है

  • [IIT 2018]

माना $\mathrm{C}$ सबसे बड़ा वृत्त है, जिसका केन्द्र $(2,0)$ पर है तथा जो दीर्घवृत $\frac{\mathrm{x}^2}{36}+\frac{\mathrm{y}^2}{16}=1$ के अंतर्गत है। यदि बिन्दु $(1, \alpha)$ वृत्त $C$ पर है, तो $10 \alpha^2$ बराबर है_______________. 

  • [JEE MAIN 2023]

यदि दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ के किसी बिन्दु $P$ पर खींचे गये अभिलम्ब निर्देशांकों को $G$ व $g$ पर मिलते हैं, तो $PG:Pg = $