Obtain Coulomb’s law from Gauss’s law.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

As shown in figure, consider a point charge $+q$ kept at $\mathrm{O}$.

A Gaussian surface ' $\mathrm{S}$ ' is shown in figure includes charge $q$.

Consider surface area $\overrightarrow{d s}$ at point $\mathrm{P}$. Here, $\overrightarrow{\mathrm{E}} \| \overrightarrow{d s}$ and so that $\theta=0^{\circ}$.

According to Gauss's law,

$\phi=\frac{q}{\varepsilon_{0}}$ $\therefore \int \overrightarrow{\mathrm{E}} \cdot \overrightarrow{d s}=\frac{q}{\varepsilon_{0}}$ $\therefore \int \mathrm{E} \cdot d s \cos 0^{\circ}=\frac{q}{\varepsilon_{0}}[\because \overrightarrow{\mathrm{E}} \| \overrightarrow{d s}]$ $\therefore \mathrm{E} \int d s=\frac{q}{\varepsilon_{0}}\left[\therefore \cos 0^{\circ}=1\right]$ $\therefore \mathrm{E} \times 4 \pi r^{2}=\frac{q}{\varepsilon_{0}}\left[\therefore \int d s=4 \pi r^{2}\right]$ $\therefore \mathrm{E}=\frac{q}{4 \pi \varepsilon_{0} r^{2}}$ $\therefore \frac{\mathrm{F}}{q}=\frac{q}{4 \pi \varepsilon_{0} r^{2}}$ $\therefore \mathrm{F}=\frac{\mathrm{Kq} q_{0}}{r^{2}}$ $\mathrm{This}$ is Coulomb's law.

897-s180

Similar Questions

Let $\rho (r) =\frac{Q}{{\pi {R^4}}}r$ be the charge density distribution for a solid sphere of radius $R$ and total charge $Q$. For a point '$p$' inside the sphere at distance $r_1$ from the centre of the sphere, the magnitude of electric field is

  • [AIEEE 2009]

Shown in the figure are two point charges $+Q$ and $-Q$ inside the cavity of a spherical shell. The charges are kept near the surface of the cavity on opposite sides of the centre of the shell. If $\sigma _1$ is the surface charge on the inner surface and $Q_1$ net charge on it and $\sigma _2$ the surface charge on the outer surface and $Q_2$ net charge on it then

  • [JEE MAIN 2015]

Three infinitely long charge sheets are placed as shown in figure. The electric field at point $P$ is

  • [IIT 2005]

Consider a sphere of radius $\mathrm{R}$ which carries a uniform charge density $\rho .$ If a sphere of radius $\frac{\mathrm{R}}{2}$ is carved out of it, as shown, the ratio $\frac{\left|\overrightarrow{\mathrm{E}}_{\mathrm{A}}\right|}{\left|\overrightarrow{\mathrm{E}}_{\mathrm{B}}\right|}$ of magnitude of electric field $\overrightarrow{\mathrm{E}}_{\mathrm{A}}$ and $\overrightarrow{\mathrm{E}}_{\mathrm{B}}$ respectively, at points $\mathrm{A}$ and $\mathrm{B}$ due to the remaining portion is

  • [JEE MAIN 2020]

The electric field $E$ is measured at a point $P (0,0, d )$ generated due to various charge distributions and the dependence of $E$ on $d$ is found to be different for different charge distributions. List-$I$ contains different relations between $E$ and $d$. List-$II$ describes different electric charge distributions, along with their locations. Match the functions in List-$I$ with the related charge distributions in List-$II$.

 List-$I$  List-$II$
$E$ is independent of $d$ A point charge $Q$ at the origin
$E \propto \frac{1}{d}$ A small dipole with point charges $Q$ at $(0,0, l)$ and $- Q$ at $(0,0,-l)$. Take $2 l \ll d$.
$E \propto \frac{1}{d^2}$ An infinite line charge coincident with the x-axis, with uniform linear charge density $\lambda$
$E \propto \frac{1}{d^3}$ Two infinite wires carrying uniform linear charge density parallel to the $x$-axis. The one along ( $y=0$, $z =l$ ) has a charge density $+\lambda$ and the one along $( y =0, z =-l)$ has a charge density $-\lambda$. Take $2 l \ll d$
  plane with uniform surface charge density

 

  • [IIT 2018]