On the ellipse $4{x^2} + 9{y^2} = 1$, the points at which the tangents are parallel to the line $8x = 9y$ are

  • [IIT 1999]
  • A

    $\left( {\frac{2}{5},\;\frac{1}{5}} \right)$

  • B

    $\left( { - \frac{2}{5},\;\frac{1}{5}} \right)$

  • C

    $\left( {  \frac{2}{5},\; - \frac{1}{5}} \right)$

  • D

    $(b)$ and $(c)$ both

Similar Questions

If the normal at any point $P$ on the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ meets the co-ordinate axes in $G$ and $g$ respectively, then $PG:Pg = $

Find the coordinates of the foci, the vertices, the lengths of major and minor axes and the eccentricity of the ellipse $9 x^{2}+4 y^{2}=36$.

If two tangents drawn from a point $(\alpha, \beta)$ lying on the ellipse $25 x^{2}+4 y^{2}=1$ to the parabola $y^{2}=4 x$ are such that the slope of one tangent is four times the other, then the value of $(10 \alpha+5)^{2}+\left(16 \beta^{2}+50\right)^{2}$ equals

  • [JEE MAIN 2022]

Consider an elIipse, whose centre is at the origin and its major axis is along the $x-$ axis. If its eccentricity is $\frac{3}{5}$ and the distance between its foci is $6$, then the area (in sq. units) of the quadrilateral inscribed in the ellipse, with the vertices as the vertices of the ellipse, is

  • [JEE MAIN 2017]

Tangent is drawn to ellipse $\frac{{{x^2}}}{{27}} + {y^2} = 1$ at $(3\sqrt 3 \cos \theta ,\;\sin \theta )$ where $\theta \in (0,\;\pi /2)$. Then the value of $\theta $ such that sum of intercepts on axes made by this tangent is minimum, is

  • [IIT 2003]