एक थैले में $5$ सफेद व $4$ काली गेंदें हैं तथा दूसरे थैले में $7$ सफेद व $9$ काली गेंदे हैैं। एक गेंद पहले थैले में से दूसरे थैले में रख दी जाती है और तब दूसरे थैले में से एक गेंद निकाली जाती है तो उसके सफेद होने की प्रायिकता है
$\frac{8}{{17}}$
$\frac{{40}}{{153}}$
$\frac{5}{9}$
$\frac{4}{9}$
दो विद्यार्थियों अनिल और आशिमा एक परीक्षा में प्रविष्ट हुए। अनिल के परीक्षा में उत्तीर्ण होने की प्रायिकता $0.05$ है और आशिमा के परीक्षा में उत्तीर्ण होने की प्रायिकता $0.10$ है। दोनों के परीक्षा में उत्तीर्ण होने की प्रायिकता $0.02$ है। प्रायिकता ज्ञात कीजिए कि
दोनों में से केवल एक परीक्षा में उत्तीर्ण होगा।
एक न्याय संगत पासे $(fair\,die)$ के फलकों पर संख्याएँ $1,2,3$, $4,5,6$ लिखी हुई हैं। दो व्यक्ति $A , B$ इस पासे को बारी बारी फेंकते हैं और इस खेल में प्रथम बारी $A$ की होती है। जीतने वाला व्यक्ति वह है जिसके पासे के फेंकने पर मिली संख्या उसके. प्रतिद्वंदी द्वारा पिछली बार पासा फेंकने पर मिली संख्या से विभिन्न हो। $B$ के जीतने की प्रायिकता का मान होगा :
सिद्ध कीजिए कि यदि $E$ और $F$ दो स्वतंत्र घटनाएँ हैं तो $E$ और $F ^{\prime}$ भी स्वतंत्र होंगी।
$12$ टिकट जिन पर $1, 2, 3......12$ अंकित है। एक टिकट यदृच्छया निकाला जाता है तो संख्या को $2$ या $3$ का गुणज होने की प्रायिकता है
एक सिक्का दो बार उछाला जाता है। यदि घटनाएँ $A$ तथा $B$ निम्न प्रकार परिभाषित हो : $A =$ पहली उछाल पर शीर्ष, $B = $ दूसरी उछाल पर शीर्ष, तो $(A \cup B)$ की प्रायिकता है