दो घटनाओं $A$ तथा $B$ में से कम से कम एक के घटित होने की प्रायिकता $0.6$ है। यदि घटनाओं $A$ तथा $B$ के साथ-साथ घटित होने की प्रायिकता $0.2$ हो, तो $P\,(\bar A) + P\,(\bar B) = $
$0.4$
$0.8$
$1.2$
$1.4$
यदि ${A_1},\,{A_2},...{A_n}$ कोई $n$ घटनायें हैं, तो
घटनाएँ $E$ और $F$ इस प्रकार हैं कि $P ( E-$ नहीं और $F -$ नहीं $)=0.25,$ बताइए कि $E$ और $F$ परस्पर अपवर्जी हैं या नहीं ?
एक अनभिनत (unbiased) सिक्के को उछाला जाता है। चित्त आने पर अनभिनत पासों के एक युग्म को उछाला जाता है तथा उन पर आई संख्याओं का योग नोट किया जाता है। यदि सिक्के पर पट् आता है, तो $9$ कार्डो जिन पर संख्याएं $1,2,3, \ldots, 9$ अंकित हैं, की एक अच्छी प्रकार से फेंटी गई गड्डी में से एक कार्ड निकाल कर उस पर आई संख्या नोट की जाती है। इस प्रकार नोट की गई संख्या $7$ अथवा $8$ होने की प्रायिकता है
यदि प्रथम $100$ धनात्मक पूर्णांकों से एक पूर्णांक यदृच्छया चुना जाये तो उसके $4$ या $6$ का गुणज होने की प्रायिकता है
तीन व्यक्ति $P, Q$ तथा $R$ स्वतंत्र रूप से एक निशाने को भेदने का प्रयास करते हैं। यदि उनके निशाने को भेद पाने की प्रायिकताएं क्रमशः $\frac{3}{4}, \frac{1}{2}$ तथा $\frac{5}{8}$ हैं, तो $P$ अथवा $Q$ के निशाना भेद पाने परन्तु $R$ के निशाना न भेद पाने की प्रायिकता है