दो घटनाओं $A$ तथा $B$ में से कम से कम एक के घटित होने की प्रायिकता $0.6$ है। यदि घटनाओं $A$ तथा $B$ के साथ-साथ घटित होने की प्रायिकता $0.2$ हो, तो $P\,(\bar A) + P\,(\bar B) = $
$0.4$
$0.8$
$1.2$
$1.4$
$23$ व्यक्तियों की एक समिति, जो एक गोलाकार मेज के चारों ओर बैठते हैं। दो व्यक्तियों के एक साथ बैठने के प्रतिकूल संयोगानुपात हैं
यदि $P(A) = \frac{1}{2},\,\,P(B) = \frac{1}{3}$ एवं $P(A \cap B) = \frac{7}{{12}},$ तो $P\,(A' \cap B')$ का मान है
निम्नलिखित सारणी में खाली स्थान भरिए
$P(A)$ | $P(B)$ | $P(A \cap B)$ | $P (A \cup B)$ |
$0.5$ | $0.35$ | ......... | $0.7$ |
यदि $E$ और $F$ घटनाएँ इस प्रकार हैं कि $P ( E )=\frac{1}{4}, P ( F )=\frac{1}{2}$ और $P ( E$ और $F )=\frac{1}{8},$ तो ज्ञात कीजिए $P ( E$ या $F )$
यदि $P(B) = \frac{3}{4}$, $P(A \cap B \cap \bar C) = \frac{1}{3}{\rm{ }}$ तथा $P(\bar A \cap B \cap \bar C) = \frac{1}{3},$ तब $P(B \cap C)$ का मान है