- Home
- Standard 11
- Mathematics
ताश के $52$ पत्तों की एक सुमिश्रित गड्डी से एक पत्ता यादृच्छया निकाला जाता है। निम्नलिखित में से किन दशाओं में घटनाएँ $E$ और $F$ स्वतंत्र हैं?
$E$ : 'निकाला गया पत्ता काले रंग का है'
$F :$ 'निकाला गया पत्ता एक बादशाह है'
Solution
In a deck of $52$ cards, $26$ cards are black and $4$ cards are kings.
$\therefore $ $\mathrm{P}(\mathrm{E})=\mathrm{P}$ (the card drawn is a black ) $=\frac{26}{52}=\frac{1}{2}$
$\therefore $ $\mathrm{P}(\mathrm{F})=\mathrm{P}$ (the card drawn is a king ) $=\frac{4}{52}=\frac{1}{13}$
In the pack of $52$ cards, $2$ cards are black as well as kings.
$\therefore $ $\mathrm{P}(\mathrm{EF})=\mathrm{P}$ (the card drawn is black king ) $=\frac{2}{52}=\frac{1}{26}$
$\mathrm{P}(\mathrm{E}) \times \mathrm{P}(\mathrm{F})=\frac{1}{2} \cdot \frac{1}{13}=\frac{1}{26}=\mathrm{P}(\mathrm{EF})$
Therefore, the given events $\mathrm{E}$ and $\mathrm{F}$ are independent.