ताश के $52$ पत्तों की एक सुमिश्रित गड्डी से एक पत्ता यादृच्छया निकाला जाता है। निम्नलिखित में से किन दशाओं में घटनाएँ $E$ और $F$ स्वतंत्र हैं?
$E$ : 'निकाला गया पत्ता काले रंग का है'
$F :$ 'निकाला गया पत्ता एक बादशाह है'
In a deck of $52$ cards, $26$ cards are black and $4$ cards are kings.
$\therefore $ $\mathrm{P}(\mathrm{E})=\mathrm{P}$ (the card drawn is a black ) $=\frac{26}{52}=\frac{1}{2}$
$\therefore $ $\mathrm{P}(\mathrm{F})=\mathrm{P}$ (the card drawn is a king ) $=\frac{4}{52}=\frac{1}{13}$
In the pack of $52$ cards, $2$ cards are black as well as kings.
$\therefore $ $\mathrm{P}(\mathrm{EF})=\mathrm{P}$ (the card drawn is black king ) $=\frac{2}{52}=\frac{1}{26}$
$\mathrm{P}(\mathrm{E}) \times \mathrm{P}(\mathrm{F})=\frac{1}{2} \cdot \frac{1}{13}=\frac{1}{26}=\mathrm{P}(\mathrm{EF})$
Therefore, the given events $\mathrm{E}$ and $\mathrm{F}$ are independent.
एक अभिनत सिक्का उछाला जाता है। यदि इस पर शीर्ष प्राप्त होता है तो एक पाँसे का युग्म उछाला जाता है तथा उन पर प्राप्त संख्याओं को जोड़कर नोट कर लिया जाता है। यदि पुच्छ आता है तो $11$ पत्तों की एक गड्डी $2, 3, 4,.......,12$ में से एक पत्ता खींचा जाता है एवं उस पर अंकित संख्या को नोट किया जाता है तो इस बात की प्रायिकता कि नोट की हुई संख्या $7$ या $8$ हो, है
यदि $A$ तथा $B$ दो स्वेच्छ घटनायें हो, तब
यदि $A$ और $B$ दो घटनायें हैं, तब $P(\bar A \cap B) = $
एक छात्रावास में $60 \%$ विद्यार्थी हींदी का, $40 \%$ अंग्रेज़ी का और $20 \%$ दोनों अखबार पढ़ते हैं। एक छात्रा को यादृच्छ्या चुना जाता है।
यदि वह अंग्रेज़ी का अखबार पढ़ती है तो उसके हींदी का अखबार भी पढने वाली होने की प्रायिकता ज्ञात कीजिए।
तीन सिक्कों को उछाला गया है। मान लें $E$ घटना 'तीन चित या तीन पट प्राप्त होना ' और $F$ घटना 'न्यूनतम दो चित प्राप्त होना' और $G$ घटना 'अधिकतम दो पट प्राप्त होना' को निरूपित करते हैं। युग्म $( E , F ),( E , G )$ और $( F , G )$ में कौन-कौन से स्वतंत्र हैं? कौन-कौन से पराश्रित हैं?