ચોરસની એક બાજુ ધન $x-$ અક્ષ સાથે લઘુકોણ $\alpha$ બનાવે છે અને તેના શિરોબિંદુઓમાંથી એક શિરોબિંદુ ઊંગમબિંદુ છે જો ચોરસના બાકીના ત્રણ શિરોબિંદુઓ $x-$ અક્ષની ઉપરની બાજુએ આવેલા છે અને તેની લંબાઇ $4$ હોય તો જે વિકર્ણ ઊંગમબિંદુમાંથી પસાર ન થાય તેનું સમીકરણ મેળવો
$(cos\, \alpha + sin\, \alpha) x + (cos\, \alpha - sin\, \alpha) y = 4$
$(cos\, \alpha + sin\, \alpha) x - (cos\, \alpha - sin\, \alpha) y = 4$
$(cos\, \alpha - sin\, \alpha) x + (cos\, \alpha + sin\, \alpha) y = 4$
$(cos\, \alpha - sin\, \alpha) x - (cos\, \alpha + sin\, \alpha) y = 4 cos\, 2\alpha$
આપેલ $A(1, 1)$ અને કોઈ રેખા $AB$ એ $x-$ અક્ષને બિંદુ $B$ આગળ છેદે છે જો $AC$ એ $AB$ ને લંબ અને $y-$ અક્ષને બિંદુ $C$ માં સ્પર્શે તો $BC$ ના મધ્યબિંદુ $P$ નું બિંદુપથ સમીકરણ મેળવો
ત્રિકોણ $ABC$ ના શિરોબિંદુ અનુક્રમે $A (-3, 2)$ અને $B (-2, 1)$ છે જો ત્રિકોણનું મધ્યકેન્દ્ર રેયખા $3x + 4y + 2 = 0$ પર આવેલ હોય તો શિરોબિંદુ $C$ કઈ રેખા પર આવેલ હોય?
એક સમબાજુતુષ્કોણની બે બાજુઓ રેખાઓ $x - y + 1 = 0$ અને $7x - y - 5 = 0$ પર છે. જો તેના વિકર્ણો બિંદુ $\left( { - 1, - 2} \right)$ આગળ છેદે ,તો નીચેના માંથી કયું આ સમબાજુ ચતુષ્કોણનું એક શિરોબિંદુ છે?
$2x - 3y = 4$ ને સમાંતર રેખા કે જે અક્ષો સાથે $12$ ચોરસ એકમ ક્ષેત્રફળનું ત્રિકોણ બનાવે તે રેખાનું સમીકરણ
જો સમાંતરબાજુ ચતુષ્કોણ $ABDC$ ના શિરોબિંદુ $A, B$ અને $C$ અનુક્રમે $(1, 2), (3, 4)$ અને $(2, 5)$, હોય તો વિકર્ણ $AD$ નું સમીકરણ મેળવો.