एक पिण्ड की स्थिति, जो त्वरण 'a' से गतिशील है, व्यंजक $x = K{a^m}{t^n}$ से प्रदर्शित है, जहाँ t समय है। $m$ एवं $n$ की विमा होगी
$m = 1$, $n = 1$
$m = 1,\;n = 2$
$m = 2,\;n = 1$
$m = 2,\;n = 2$
यदि समय $(t)$, वेग $(v)$, और कोणीय संवेग $(l)$ को मूल मात्रकों के रूप में लिया गया है, तब $t, v$ और $l$ के पदों में द्रव्यमान $( m )$ की विमाएं होंगी।
किसी ग्रह के लिये कक्षीय वेग निम्न सूत्र द्वारा दिया जाता है $v = {G^a}{M^b}{R^c}$, तब
मान लीजिये कि एक इकाई प्रणाली में द्रव्यमान तथा कोणीय संवेग विमा (dimensionless) रहित है। यदि लम्बाई की विमा $L$ हो तब निम्नलिखित कथनों में से कौनसा (से) सही है( हैं) ?
$(1)$ बल की विमा (dimension) $L ^{-3}$ है।
$(2)$ ऊर्जा की विमा (dimension) $L ^{-2}$ है।
$(3)$ शक्ति की विमा (dimension) $L ^{-5}$ है।
$(4)$ रेखीय संवेग की विमा (dimension) $L ^{-1}$ है।
निम्नलिखित में से कौन से समीकरण विमीय रूप से सत्य हैं ?
जहाँ $t =$ समय, $h =$ ऊँचाई, $s =$ पष्ठ तनाव, $\theta=$ कोण, $\rho=$ घनत्व, $a , r =$ त्रिज्या, $g =$ गुरूत्वीय त्वरण, $v =$ आयतन, $p =$ दाब, $W =$ किया गया कार्य, $\Gamma=$ बल आधूर्ण, $\varepsilon=$ विद्युत शीलता, $E =$ विद्युत क्षेत्र, $J =$ धारा घनत्व, $L =$ लंबाई।
एक राशि $f$ का सूत्र $f =\sqrt{\frac{ hc ^{5}}{ G }}$ है। यहाँ पर $c$ प्रकाश की गति $G$ सर्वव्यापी गुरूत्वाकर्षण स्थिरांक तथा $h$ प्लांक स्थिरांक है। $f$ की विमाएँ निम्न में से किसके समान है ?