सिद्ध कीजिए $\frac{\cos 7 x+\cos 5 x}{\sin 7 x-\sin 5 x}=\cot x$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

we get,

$L.H.S.$ $=\frac{2 \cos \frac{7 x+5 x}{2} \cos \frac{7 x-5 x}{2}}{2 \cos \frac{7 x+5 x}{2} \sin \frac{7 x-5 x}{2}}$

$=\frac{\cos x}{\sin x}=\cot x= R.H.S.$

Similar Questions

$96 \cos \frac{\pi}{33} \cos \frac{2 \pi}{33} \cos \frac{4 \pi}{33} \cos \frac{8 \pi}{33} \cos \frac{16 \pi}{33}$  बराबर है

  • [JEE MAIN 2023]

यदि $\sin 2\theta + \sin 2\phi = 1/2$ तथा  $\cos 2\theta + \cos 2\phi = 3/2$, तब  ${\cos ^2}(\theta - \phi ) = $

यदि $\sin \alpha = \frac{{ - 3}}{5},$ जहाँ  $\pi < \alpha < \frac{{3\pi }}{2},$ तो $\cos \frac{1}{2}\alpha = $

यदि $\alpha ,\,\beta ,\,\gamma \in \,\left( {0,\,\frac{\pi }{2}} \right)$, तो $\frac{{\sin \,(\alpha + \beta + \gamma )}}{{\sin \alpha + \sin \beta + \sin \gamma }}$ का मान होगा

यदि $\sin \theta  + \cos \theta  = x,$ तब ${\sin ^6}\theta  + {\cos ^6}\theta  = \frac{1}{4}[4 - 3{({x^2} - 1)^2}]$ होगा