$96 \cos \frac{\pi}{33} \cos \frac{2 \pi}{33} \cos \frac{4 \pi}{33} \cos \frac{8 \pi}{33} \cos \frac{16 \pi}{33}$ बराबर है
यदि $\sin 2\theta + \sin 2\phi = 1/2$ तथा $\cos 2\theta + \cos 2\phi = 3/2$, तब ${\cos ^2}(\theta - \phi ) = $
यदि $\sin \alpha = \frac{{ - 3}}{5},$ जहाँ $\pi < \alpha < \frac{{3\pi }}{2},$ तो $\cos \frac{1}{2}\alpha = $
यदि $\alpha ,\,\beta ,\,\gamma \in \,\left( {0,\,\frac{\pi }{2}} \right)$, तो $\frac{{\sin \,(\alpha + \beta + \gamma )}}{{\sin \alpha + \sin \beta + \sin \gamma }}$ का मान होगा
यदि $\sin \theta + \cos \theta = x,$ तब ${\sin ^6}\theta + {\cos ^6}\theta = \frac{1}{4}[4 - 3{({x^2} - 1)^2}]$ होगा