निम्नलिखित को सिद्ध कीजिए
$\frac{\cos 9 x-\cos 5 x}{\sin 17 x-\sin 3 x}=-\frac{\sin 2 x}{\cos 10 x}$
It is known that
$\cos A - \cos B = - 2\sin \left( {\frac{{A + B}}{2}} \right)\sin \left( {\frac{{A - B}}{2}} \right),$
$\sin A - \sin B = 2\cos \left( {\frac{{A + B}}{2}} \right)\sin \left( {\frac{{A - B}}{2}} \right)$
$\therefore$ $L.H.S.$ $=\frac{\cos 9 x-\cos 5 x}{\sin 17 x-\sin 3 x}$
$=\frac{-2 \sin \left(\frac{9 x+5 x}{2}\right) \cdot \sin \left(\frac{9 x-5 x}{2}\right)}{2 \cos \left(\frac{17 x+3 x}{2}\right) \cdot \sin \left(\frac{17 x-3 x}{2}\right)}$
$=\frac{-2 \sin 7 x \cdot \sin 2 x}{2 \cos 10 x \cdot \sin 7 x}$
$=-\frac{\sin 2 x}{\cos 10 x}$
$=R. H.S.$
माना $\alpha ,\beta $ इस प्रकार है कि $\pi < (\alpha - \beta ) < 3\pi $. यदि $\sin \alpha + \sin \beta = - \frac{{21}}{{65}}$ तथा $\cos \alpha + \cos \beta = - \frac{{27}}{{65}},$ तो $\cos \frac{{\alpha - \beta }}{2}$ का मान है
यदि $A + B + C = \pi ,$ तब $\cos \,\,2A + \cos \,\,2B + \cos \,\,2C = $
$1 - 2{\sin ^2}\left( {\frac{\pi }{4} + \theta } \right) = $
यदि $a{\sin ^2}x + b{\cos ^2}x = c,\,\,$$b\,{\sin ^2}y + a\,{\cos ^2}y = d$ तथा $a\,\tan x = b\,\tan y,$ तब $\frac{{{a^2}}}{{{b^2}}}$ बराबर है
$\cos \frac{\pi }{5}\cos \frac{{2\pi }}{5}\cos \frac{{4\pi }}{5}\cos \frac{{8\pi }}{5} = $