સાબિત કરો કે : $\frac{\sin x-\sin 3 x}{\sin ^{2} x-\cos ^{2} x}=2 \sin x$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is known that

$\sin A-\sin B=2 \cos \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right), \cos ^{2} A-\sin ^{2} A=\cos 2 A$

$\therefore$ $L.H.S.$ $=\frac{\sin x-\sin 3 x}{\sin ^{2} x-\cos ^{2} x}$

$=\frac{2 \cos \left(\frac{x+3 x}{2}\right) \sin \left(\frac{x-3 x}{2}\right)}{-\cos 2 x}$

$=\frac{2 \cos 2 x \sin (-x)}{-\cos 2 x}$

$=-2 \times(-\sin x)$

$=2 \sin x= R . H.S.$

Similar Questions

જો $\alpha ,\,\beta ,\,\gamma \in \,\left( {0,\,\frac{\pi }{2}} \right)$, તો $\frac{{\sin \,(\alpha + \beta + \gamma )}}{{\sin \alpha + \sin \beta + \sin \gamma }}  = . . ..$

જો $x = \sin {130^o}\,\cos {80^o},\,\,y = \sin \,{80^o}\,\cos \,{130^o},\,\,z = 1 + xy,$ તો આપેલ પૈકી ક્યૂ સત્ય છે.

જો $a\,\cos 2\theta + b\,\sin 2\theta = c$ ના બીજ  $\alpha$ અને $\beta$ હોય તો $\tan \alpha + \tan \beta  = . . .$

$1 + \cos \,{56^o} + \cos \,{58^o} - \cos {66^o} = $

  • [IIT 1964]

$\sqrt 3 \,{\rm{cosec}}\,{20^o} - \sec \,{20^o} = $

  • [IIT 1988]