निम्नलिखित को सिद्ध कीजिए
$\frac{\cos 4 x+\cos 3 x+\cos 2 x}{\sin 4 x+\sin 3 x+\sin 2 x}=\cot 3 x$
$L.H.S.$ $=\frac{\cos 4 x+\cos 3 x+\cos 2 x}{\sin 4 x+\sin 3 x+\sin 2 x}$
$=\frac{(\cos 4 x+\cos 2 x)+\cos 3 x}{(\sin 4 x+\sin 2 x)+\sin 3 x}$
$=\frac{2 \cos \left(\frac{4 x+2 x}{2}\right) \cos \left(\frac{4 x-2 x}{2}\right)+\cos 3 x}{2 \sin \left(\frac{4 x+2 x}{2}\right) \cos \left(\frac{4 x-2 x}{2}\right)+\sin 3 x}$
$[\because \cos A+\cos B=2 \cos \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right),$
$\sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)]$
$=\frac{2 \cos 3 x \cos +\cos 3 x}{2 \sin 3 x \cos x+\sin 3 x}$
$=\frac{\cos 3 x(2 \cos x+1)}{\sin 3 x(2 \cos x+1)}$
$\cot 3 x=R .H .S.$
यदि $\sin x + \cos x = \frac{1}{5},$ तब $\tan 2x$ का मान होगा
$\sqrt 3 \,{\rm{cosec}}\,{20^o} - \sec \,{20^o} = $
यदि $x\cos \theta = y\cos \,\left( {\theta + \frac{{2\pi }}{3}} \right) = z\cos \,\left( {\theta + \frac{{4\pi }}{3}} \right)$ , तब $\frac{1}{x} + \frac{1}{y} + \frac{1}{z}$ बराबर है
यदि $0 < x, y < \pi$ तथा $\cos x+\cos y-\cos (x+y)=\frac{3}{2}$, है, तो $\sin x+\cos y$ बराबर है
$\frac{1}{{\tan 3A - \tan A}} - \frac{1}{{\cot 3A - \cot A}} = $