3.Trigonometrical Ratios, Functions and Identities
medium

निम्नलिखित को सिद्ध कीजिए

$\frac{\cos 4 x+\cos 3 x+\cos 2 x}{\sin 4 x+\sin 3 x+\sin 2 x}=\cot 3 x$

Option A
Option B
Option C
Option D

Solution

$L.H.S.$ $=\frac{\cos 4 x+\cos 3 x+\cos 2 x}{\sin 4 x+\sin 3 x+\sin 2 x}$

$=\frac{(\cos 4 x+\cos 2 x)+\cos 3 x}{(\sin 4 x+\sin 2 x)+\sin 3 x}$

$=\frac{2 \cos \left(\frac{4 x+2 x}{2}\right) \cos \left(\frac{4 x-2 x}{2}\right)+\cos 3 x}{2 \sin \left(\frac{4 x+2 x}{2}\right) \cos \left(\frac{4 x-2 x}{2}\right)+\sin 3 x}$

$[\because \cos A+\cos B=2 \cos \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right),$

$\sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)]$

$=\frac{2 \cos 3 x \cos +\cos 3 x}{2 \sin 3 x \cos x+\sin 3 x}$

$=\frac{\cos 3 x(2 \cos x+1)}{\sin 3 x(2 \cos x+1)}$

$\cot 3 x=R .H .S.$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.