Prove that $\sec A(1-\sin A)(\sec A+\tan A)=1$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$LHS =\sec A (1-\sin A )(\sec A +\tan A )$

$=\left(\frac{1}{\cos A }\right)(1-\sin A )\left(\frac{1}{\cos A }+\frac{\sin A }{\cos A }\right)$

$=\frac{(1-\sin A)(1+\sin A)}{\cos ^{2} A}=\frac{1-\sin ^{2} A}{\cos ^{2} A}$

$=\frac{\cos ^{2} A}{\cos ^{2} A}=1=R H S$

Similar Questions

State whether the following are true or false. Justify your answer.

$\sin \theta=\cos \theta$ for all values of $\theta$

In $\triangle$ $ABC,$ right-angled at $B$, $AB =5\, cm$ and $\angle ACB =30^{\circ}$ (see $Fig.$). Determine the lengths of the sides $BC$ and $AC .$

In triangle $ABC ,$ right -angled at $B ,$ if $\tan A =\frac{1}{\sqrt{3}},$ find the value of:

$(i)$ $\sin A \cos C+\cos A \sin C$

$(ii)$ $\cos A \cos C-\sin A \sin C$

If $\tan A =\cot B ,$ prove that $A + B =90^{\circ}$

Evaluate:

$\frac{\sin ^{2} 63^{\circ}+\sin ^{2} 27^{\circ}}{\cos ^{2} 17^{\circ}+\cos ^{2} 73^{\circ}}$