सिद्ध कीजिए कि $\sec A (1-\sin A )( sec A +\tan A )=1$
$LHS =\sec A (1-\sin A )(\sec A +\tan A )$
$=\left(\frac{1}{\cos A }\right)(1-\sin A )\left(\frac{1}{\cos A }+\frac{\sin A }{\cos A }\right)$
$=\frac{(1-\sin A)(1+\sin A)}{\cos ^{2} A}=\frac{1-\sin ^{2} A}{\cos ^{2} A}$
$=\frac{\cos ^{2} A}{\cos ^{2} A}=1=R H S$
निम्नलिखित सर्वसमिका सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित है, न्यून कोण है :
सर्वकमिका $\operatorname{cosec}^{2} A=1+\cot ^{2} A$ को लागु करके
$\frac{\cos A-\sin A+1}{\cos A+\sin A-1}=\operatorname{cosec} A+\cot A$
बताइए कि निम्नलिखित कथन सत्य हैं या असत्य। कारण सहित अपने उत्तर की पुष्टि कीजिए।
$(i)$ $\tan A$ का मान सदैव $1$ से कम होता है।
$(ii)$ कोण $A$ के किसी मान के लिए $\sec A =\frac{12}{5}$
$\frac{2 \tan 30^{\circ}}{1-\tan ^{2} 30^{\circ}}=$
यदि $\angle A$ और $\angle B$ न्यून कोण हो, जहाँ $\cos A =\cos B ,$ तो दिखाइए कि $\angle A =\angle B$
बताइए कि निम्नलिखित कथन सत्य हैं या असत्य। कारण सहित अपने उत्तर की पुष्टि कीजिए।
$(i)$ $\cos A ,$ कोण $A$ के $cosecant$ के लिए प्रयुक्त एक संक्षिप्त रूप है।
$(ii)$ $\cot A , \cot$ और $A$ का गुणनफल होता है।
$(iii)$ किसी भी कोण $\theta$ के लिए $\sin \theta=\frac{4}{3}$