Express the ratios $\cos A ,$ tan $A$ and $\sec A$ in terms of $\sin A .$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Since,$\cos ^{2} A+\sin ^{2} A=1,$ therefore

$\cos ^{2} A =1-\sin ^{2} A , i . e ., \cos A =\pm \sqrt{1-\sin ^{2} A }$

This gives $\quad \cos A =\sqrt{1-\sin ^{2} A }$

Hence, $\quad \tan A =\frac{\sin A }{\cos A }=\frac{\sin A }{\sqrt{1-\sin ^{2} A }}$

and $\sec A =\frac{1}{\cos A }=\frac{1}{\sqrt{1-\sin ^{2} A }}$

Similar Questions

Write all the other trigonometric ratios of $\angle A$ in terms of $\sec$ $A$.

Given $\sec \theta=\frac{13}{12},$ calculate all other trigonometric ratios.

Evaluate:

$\sin 25^{\circ} \cos 65^{\circ}+\cos 25^{\circ} \sin 65^{\circ}$

State whether the following are true or false. Justify your answer.

$\sin \theta=\cos \theta$ for all values of $\theta$

Evaluate:

$\cos 48^{\circ}-\sin 42^{\circ}$