निम्नलिखित सर्वसमिका सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित है, न्यून कोण है :
$\frac{\cos A}{1+\sin A}+\frac{1+\sin A}{\cos A}=2 \sec A$
$\frac{\cos A}{1+\sin A}+\frac{1+\sin A}{\cos A}=2 \sec A$
$L.H.S.\,=\frac{\cos A}{1+\sin A}+\frac{1+\sin A}{\cos A}$
$=\frac{\cos ^{2} A+(1+\sin A)^{2}}{(1+\sin A)(\cos A)}$
$=\frac{\cos ^{2} A+1+\sin ^{2} A+2 \sin A}{(1+\sin A)(\cos A)}$
$=\frac{\sin ^{2} A+\cos ^{2} A+1+2 \sin A}{(1+\sin A)(\cos A)}$
$=\frac{1+1+2 \sin A}{(1+\sin A)(\cos A)}=\frac{2+2 \sin A}{(1+\sin A)(\cos A)}$
$=\frac{2(1+\sin A)}{(1+\sin A)(\cos A)}=\frac{2}{\cos A}=2 \sec A$
$=R . H . S .$
निम्नलिखित सर्वसमिका सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित है, न्यून कोण है :
$(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=7+\tan ^{2} A+\cot ^{2} A$
यदि $\angle A$ और $\angle B$ न्यून कोण हो, जहाँ $\cos A =\cos B ,$ तो दिखाइए कि $\angle A =\angle B$
निम्नलिखित सर्वसमिका सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित है, न्यून कोण है :
$\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\sec \theta \operatorname{cosec} \theta$
$\frac{2 \tan 30^{\circ}}{1+\tan ^{2} 30^{\circ}}=$
$\Delta ACB$ लीजिए जिसका कोण $C$ समकोण है जिसमें $AB =29$ इकाई $, BC =21$ इकाई और $\angle ABC =\theta$ $($ देखिए आकृति $)$ हैं तो निम्नलिखित के मान ज्ञात कीजिए।
$(i)$ $\cos ^{2} \theta+\sin ^{2} \theta$
$(ii)$ $\cos ^{2} \theta-\sin ^{2} \theta$.