Prove that $\frac{\cot A-\cos A}{\cot A+\cos A}=\frac{\operatorname{cosec} A-1}{\operatorname{cosec} A+1}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$LHS =\frac{\cot A -\cos A }{\cot A +\cos A }=\frac{\frac{\cos A }{\sin A }-\cos A }{\frac{\cos A }{\sin A }+\cos A }$

$=\frac{\cos A\left(\frac{1}{\sin A}-1\right)}{\cos A\left(\frac{1}{\sin A}+1\right)}=\frac{\left(\frac{1}{\sin A}-1\right)}{\left(\frac{1}{\sin A}+1\right)}=\frac{\operatorname{cosec} A-1}{\operatorname{cosec} A+1}=R H S$

Similar Questions

If $\sin ( A - B )=\frac{1}{2}, \cos ( A + B )=\frac{1}{2}, 0^{\circ} < A + B \leq 90^{\circ}, A > B ,$ find $A$ and $B$

$\sin 2 A=2 \sin A$ is true when $A=$

If $\cot \theta=\frac{7}{8},$ evaluate:

$(i)$ $\frac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)}$

$(ii)$ $\cot ^{2} \theta$

$\frac{2 \tan 30^{\circ}}{1-\tan ^{2} 30^{\circ}}=$

Write all the other trigonometric ratios of $\angle A$ in terms of $\sec$ $A$.