સાબિત કરો કે, $\frac{\cot A-\cos A}{\cot A+\cos A}=\frac{\operatorname{cosec} A-1}{\operatorname{cosec} A+1}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

ડા.બા. $=\frac{\cot A -\cos A }{\cot A +\cos A }=\frac{\frac{\cos A }{\sin A }-\cos A }{\frac{\cos A }{\sin A }+\cos A }$

$=\frac{\cos A\left(\frac{1}{\sin A}-1\right)}{\cos A\left(\frac{1}{\sin A}+1\right)}=\frac{\left(\frac{1}{\sin A}-1\right)}{\left(\frac{1}{\sin A}+1\right)}=\frac{\operatorname{cosec} A-1}{\operatorname{cosec} A+1}=$ જ.બા.

Similar Questions

જો $\tan A =\cot B$ હોય, તો સાબિત કરો કે, $A + B =90^{\circ}$

જો $\tan ( A + B )=\sqrt{3}$ અને $\tan ( A - B )=\frac{1}{\sqrt{3}} ; 0^{\circ}< A + B \leq 90^{\circ} ; A > B ,$ તો $A$ અને $B$ શોધો.

 

નીચેના વિધાનો સત્ય છે કે અસત્ય તે જણાવો. તમારા જવાબની યથાર્થતા ચકાસો :

$A =0^{\circ}$ માટે $\cot$ $A$ અવ્યાખ્યાયિત છે.

નીચેના વિધાનો સત્ય છે કે નહિ તે કારણ આપી જણાવો :

$(i)$ ખૂણા $A$ ના $cosecant$ને સંક્ષિપ્તમાં $\cos A$ તરીકે લખાય છે. 

$(ii)$ $\cot$ અને $A$ નો ગુણાકાર $\cot A$ છે.

$(iii)$ $\theta$ માપવાળા કોઈ એક ખૂણા માટે $\sin \theta=\frac{4}{3}$ શક્ય છે.

જો $15 \cot A =8$ હોય, તો $\sin A$ અને $\sec A$ શોધો.