સાબિત કરો કે, $\cos 2 x \cos \frac{x}{2}-\cos 3 x \cos \frac{9 x}{2}=\sin 5 x \sin \frac{5 x}{2}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We have

${\text{L}}{\text{.H}}{\text{.S}}{\text{. }} = \frac{1}{2}\left[ {2\cos 2x\cos \frac{x}{2} - 2\cos \frac{{9x}}{2}\cos 3x} \right]$

$ = {1}{2}[ \cos \left( {2x + \frac{x}{2}} \right) + \cos \left( {2x - \frac{x}{2}} \right)$

$ - \cos \left( {\frac{{9x}}{2} + 3x} \right) - \cos \left( {\frac{{9x}}{2} - 3x} \right) $

$ = \frac{1}{2}\left[ {\cos \frac{{5x}}{2} + \cos \frac{{3x}}{2} - \cos \frac{{15x}}{2} - \cos \frac{{3x}}{2}} \right]$

$ = \frac{1}{2}\left[ {\cos \frac{{5x}}{2} - \cos \frac{{15x}}{2}} \right]$

$ = \frac{1}{2}\left[ { - 2\sin \left\{ {\frac{{\frac{{5x}}{2} + \frac{{15x}}{2}}}{2}} \right\}\sin \left\{ {\frac{{\frac{{5x}}{2} - \frac{{15x}}{2}}}{2}} \right\}} \right]$

$ =  - \sin 5x\sin \left( { - \frac{{5x}}{2}} \right)$

$ = \sin 5x\sin \frac{{5x}}{2} = R.H.S.$

Similar Questions

$\tan 2 x=-\cot \left(x+\frac{\pi}{3}\right)$ ઉકેલો.

જો $e ^{\left(\cos ^{2} x+\cos ^{4} x+\cos ^{6} x+\ldots \ldots \infty\right) \log _{e} 2}$ એ સમીકરણ $t ^{2}-9 t +8=0,$ નું સમાધાન કરે, તો $\frac{2 \sin x}{\sin x+\sqrt{3} \cos x}\left(0 < x < \frac{\pi}{2}\right)$ નું મૂલ્ય .......... થાય.

  • [JEE MAIN 2021]

સમીકરણ $\sqrt[3]{{\sin \theta  - 1}} + \sqrt[3]{{\sin \theta }} + \sqrt[3]{{\sin \theta  + 1}} = 0$ ના $[0,4\pi]$ માં ઉકેલોની સંખ્યા મેળવો. 

$\tan \,{20^o}\cot \,{10^o}\cot \,{50^o}$ ની કિમત મેળવો 

સમીકરણ $\sin 2\theta  + \cos 2\theta  =  - \frac{1}{2},\theta \in \left( {0,\frac{\pi }{2}} \right)$  ના ઉકેલોની સંખ્યા મેળવો,