बताइए कि निम्नलिखित सत्य हैं या असत्य हैं। कारण सहित अपने उत्तर की पुष्टि कीजिए।
$\sin ( A + B )=\sin A +\sin B$
$\sin (A+B)=\sin A+\sin B$
Let $A=30^{\circ}$ and $B=60^{\circ}$
$\sin (A+B)=\sin \left(30^{\circ}+60^{\circ}\right)$
$=\sin 90^{\circ}$
$=1$
$\sin A+\sin B=\sin 30^{\circ}+\sin 60^{\circ}$
$=\frac{1}{2}+\frac{\sqrt{3}}{2}=\frac{1+\sqrt{3}}{2}$
Clearly, $\sin (A+B) \neq \sin A+\sin B$
Hence, the given statement is false.
यदि $\sec \theta=\frac{13}{12}$, हो तो अन्य सभी त्रिकोणमितीय अनुपात परिकलित कीजिए।
निम्नलिखित सर्वसमिका सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित है, न्यून कोण है :
$\frac{\sin \theta-2 \sin ^{3} \theta}{2 \cos ^{3} \theta-\cos \theta}=\tan \theta$
यदि $3 \cot A =4$, तो जाँच कीजिए कि $\frac{1-\tan ^{2} A }{1+\tan ^{2} A }=\cos ^{2} A -\sin ^{2} A$ है या नहीं।
निम्नलिखित सर्वसमिका सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित है, न्यून कोण है :
$\sqrt{\frac{1+\sin A }{1-\sin A }}=\sec A +\tan A$
निम्नलिखित के मान निकालिए :
$\sin 60^{\circ} \cos 30^{\circ}+\sin 30^{\circ} \cos 60^{\circ}$