નીચેના નિયમોમાં જેમના માટે પદાવલિ વ્યાખ્યાયિત કરી છે તે ખૂણા લઘુકોણ છે. આ નિત્યસમો સાબિત કરો :

$\frac{\cos A}{1+\sin A}+\frac{1+\sin A}{\cos A}=2 \sec A$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\frac{\cos A}{1+\sin A}+\frac{1+\sin A}{\cos A}=2 \sec A$

$L.H.S.\,=\frac{\cos A}{1+\sin A}+\frac{1+\sin A}{\cos A}$

$=\frac{\cos ^{2} A+(1+\sin A)^{2}}{(1+\sin A)(\cos A)}$

$=\frac{\cos ^{2} A+1+\sin ^{2} A+2 \sin A}{(1+\sin A)(\cos A)}$

$=\frac{\sin ^{2} A+\cos ^{2} A+1+2 \sin A}{(1+\sin A)(\cos A)}$

$=\frac{1+1+2 \sin A}{(1+\sin A)(\cos A)}=\frac{2+2 \sin A}{(1+\sin A)(\cos A)}$

$=\frac{2(1+\sin A)}{(1+\sin A)(\cos A)}=\frac{2}{\cos A}=2 \sec A$

$=R . H . S .$

Similar Questions

કિંમત શોધો :

$\frac{5 \cos ^{2} 60^{\circ}+4 \sec ^{2} 30^{\circ}-\tan ^{2} 45^{\circ}}{\sin ^{2} 30^{\circ}+\cos ^{2} 30^{\circ}}$

જો $\tan A =\cot B$ હોય, તો સાબિત કરો કે, $A + B =90^{\circ}$

જેમાં $\angle C$ કાટખૂણો હોય, તેવો કોઈ $\triangle ACB$ લો. $AB = 29$ એકમ, $BC = 21$ એકમ અને $\angle ABC =\theta$ (જુઓ આકૃતિ) હોય, તો નિમ્નલિખિત મૂલ્ય શોધો:

$(i)$ $\cos ^{2} \theta+\sin ^{2} \theta$

$(ii)$ $\cos ^{2} \theta-\sin ^{2} \theta$

સાબિત કરો કે, $\sec A(1-\sin A)(\sec A+\tan A)=1$

$\cot 85^{\circ}+\cos 75^{\circ}$ ને $0^{\circ}$ અને $45^{\circ}$ વચ્ચેના માપવાળા ત્રિકોણમિતીય ગુણોત્તરનો ઉપયોગ કરીને દર્શાવો.