નીચેના વિધાનો સત્ય છે કે અસત્ય તે જણાવો. તમારા જવાબની યથાર્થતા ચકાસો :
જેમ-જેમ $\theta$ નું મૂલ્ય વધે, તેમ તેમ $\cos \theta$ નું મૂલ્ય વધે છે.
$\cos 0^{\circ}=1$
$\cos 30^{\circ}=\frac{\sqrt{3}}{2}=0.866$
$\cos 45^{\circ}=\frac{1}{\sqrt{2}}=0.707$
$\cos 60^{\circ}=\frac{1}{2}=0.5$
$\cos 90^{\circ}=0$
It can be observed that the value of $\cos \theta$ does not increase in the interval of$0^{\circ}<\theta<90^{\circ}$
Hence, the given statement is false.
જો $\cot \theta=\frac{7}{8}$ હોય તો,
$(i)$ $\frac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)}$
$(ii)$ $\cot ^{2} \theta$ શોધો.
નીચેના વિધાનો સત્ય છે કે નહિ તે કારણ આપી જણાવો :
$(i)$ ખૂણા $A$ ના $cosecant$ને સંક્ષિપ્તમાં $\cos A$ તરીકે લખાય છે.
$(ii)$ $\cot$ અને $A$ નો ગુણાકાર $\cot A$ છે.
$(iii)$ $\theta$ માપવાળા કોઈ એક ખૂણા માટે $\sin \theta=\frac{4}{3}$ શક્ય છે.
$\frac{2 \tan 30^{\circ}}{1+\tan ^{2} 30^{\circ}}=$
જેમાં $\angle C$ કાટખૂણો હોય, તેવો કોઈ $\triangle ACB$ લો. $AB = 29$ એકમ, $BC = 21$ એકમ અને $\angle ABC =\theta$ (જુઓ આકૃતિ) હોય, તો નિમ્નલિખિત મૂલ્ય શોધો:
$(i)$ $\cos ^{2} \theta+\sin ^{2} \theta$
$(ii)$ $\cos ^{2} \theta-\sin ^{2} \theta$
નીચેના વિધાનો સત્ય છે કે નહિ તે કારણ આપી જણાવો :
$(i)$ $\tan$ $A$ નું મૂલ્ય હંમેશાં $1$ કરતાં ઓછું હોય છે.
$(ii)$ $A$ માપવાળા કોઈક ખૂણા માટે $\sec A=\frac{12}{5}$ સત્ય છે.